acrn-hypervisor/hypervisor/debug/profiling.c

1419 lines
39 KiB
C

/*
* Copyright (C) 2018-2022 Intel Corporation.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifdef PROFILING_ON
#include <types.h>
#include <errno.h>
#include <asm/irq.h>
#include <asm/per_cpu.h>
#include <asm/pgtable.h>
#include <asm/vmx.h>
#include <asm/cpuid.h>
#include <asm/guest/vm.h>
#include <sprintf.h>
#include <logmsg.h>
#include <ticks.h>
#define DBG_LEVEL_PROFILING 5U
#define DBG_LEVEL_ERR_PROFILING 3U
#define MAJOR_VERSION 1
#define MINOR_VERSION 0
#define LBR_NUM_REGISTERS 32U
#define PERF_OVF_BIT_MASK 0xC0000070000000FULL
#define LVT_PERFCTR_BIT_UNMASK 0xFFFEFFFFU
#define LVT_PERFCTR_BIT_MASK 0x10000U
#define VALID_DEBUGCTL_BIT_MASK 0x1801U
static uint64_t sep_collection_switch;
static uint64_t socwatch_collection_switch;
static bool in_pmu_profiling;
static uint32_t profiling_pmi_irq = IRQ_INVALID;
extern struct irq_desc irq_desc_array[NR_IRQS];
static void profiling_initialize_vmsw(void)
{
dev_dbg(DBG_LEVEL_PROFILING, "%s: entering cpu%d",
__func__, get_pcpu_id());
dev_dbg(DBG_LEVEL_PROFILING, "%s: exiting cpu%d",
__func__, get_pcpu_id());
}
/*
* Configure the PMU's for sep/socwatch profiling.
* Initial write of PMU registers.
* Walk through the entries and write the value of the register accordingly.
* Note: current_group is always set to 0, only 1 group is supported.
*/
static void profiling_initialize_pmi(void)
{
uint32_t i, group_id;
struct profiling_msr_op *msrop = NULL;
struct sep_state *ss = &get_cpu_var(profiling_info.s_state);
dev_dbg(DBG_LEVEL_PROFILING, "%s: entering cpu%d",
__func__, get_pcpu_id());
if (ss == NULL) {
dev_dbg(DBG_LEVEL_ERR_PROFILING, "%s: exiting cpu%d",
__func__, get_pcpu_id());
return;
}
group_id = ss->current_pmi_group_id = 0U;
for (i = 0U; i < MAX_MSR_LIST_NUM; i++) {
msrop = &(ss->pmi_initial_msr_list[group_id][i]);
if (msrop != NULL) {
if (msrop->msr_id == (uint32_t)-1) {
break;
}
if (msrop->msr_id == MSR_IA32_DEBUGCTL) {
ss->guest_debugctl_value = msrop->value;
}
if (msrop->msr_op_type == (uint8_t)MSR_OP_WRITE) {
msr_write(msrop->msr_id, msrop->value);
dev_dbg(DBG_LEVEL_PROFILING,
"%s: MSRWRITE cpu%d, msr_id=0x%x, msr_val=0x%lx",
__func__, get_pcpu_id(), msrop->msr_id, msrop->value);
}
}
}
ss->pmu_state = PMU_SETUP;
dev_dbg(DBG_LEVEL_PROFILING, "%s: exiting cpu%d",
__func__, get_pcpu_id());
}
/*
* Enable all the Performance Monitoring Control registers.
*/
static void profiling_enable_pmu(void)
{
uint32_t lvt_perf_ctr;
uint32_t i;
uint32_t group_id;
uint32_t size;
struct profiling_msr_op *msrop = NULL;
struct sep_state *ss = &get_cpu_var(profiling_info.s_state);
dev_dbg(DBG_LEVEL_PROFILING, "%s: entering cpu%d",
__func__, get_pcpu_id());
if (ss == NULL) {
dev_dbg(DBG_LEVEL_ERR_PROFILING, "%s: exiting cpu%d",
__func__, get_pcpu_id());
return;
}
/* Unmask LAPIC LVT entry for PMC register */
lvt_perf_ctr = (uint32_t) msr_read(MSR_IA32_EXT_APIC_LVT_PMI);
dev_dbg(DBG_LEVEL_PROFILING, "%s: 0x%x, 0x%lx",
__func__, MSR_IA32_EXT_APIC_LVT_PMI, lvt_perf_ctr);
lvt_perf_ctr &= LVT_PERFCTR_BIT_UNMASK;
msr_write(MSR_IA32_EXT_APIC_LVT_PMI, lvt_perf_ctr);
dev_dbg(DBG_LEVEL_PROFILING, "%s: 0x%x, 0x%lx",
__func__, MSR_IA32_EXT_APIC_LVT_PMI, lvt_perf_ctr);
if (ss->guest_debugctl_value != 0U) {
/* Merge the msr vmexit loading list with HV */
if (ss->vmexit_msr_cnt == 0U) {
struct acrn_vcpu *vcpu = get_ever_run_vcpu(get_pcpu_id());
size = sizeof(struct msr_store_entry) * MAX_HV_MSR_LIST_NUM;
(void)memcpy_s(ss->vmexit_msr_list, size, vcpu->arch.msr_area.host, size);
ss->vmexit_msr_cnt = MAX_HV_MSR_LIST_NUM;
ss->vmexit_msr_list[MAX_HV_MSR_LIST_NUM].msr_index = MSR_IA32_DEBUGCTL;
ss->vmexit_msr_list[MAX_HV_MSR_LIST_NUM].value = ss->guest_debugctl_value & VALID_DEBUGCTL_BIT_MASK;
ss->vmexit_msr_cnt++;
exec_vmwrite64(VMX_EXIT_MSR_LOAD_ADDR_FULL, hva2hpa(ss->vmexit_msr_list));
exec_vmwrite32(VMX_EXIT_MSR_LOAD_COUNT, ss->vmexit_msr_cnt);
}
/* VMCS GUEST field */
ss->saved_debugctl_value
= exec_vmread64(VMX_GUEST_IA32_DEBUGCTL_FULL);
exec_vmwrite64(VMX_GUEST_IA32_DEBUGCTL_FULL,
(ss->guest_debugctl_value & VALID_DEBUGCTL_BIT_MASK));
}
group_id = ss->current_pmi_group_id;
for (i = 0U; i < MAX_MSR_LIST_NUM; i++) {
msrop = &(ss->pmi_start_msr_list[group_id][i]);
if (msrop != NULL) {
if (msrop->msr_id == (uint32_t)-1) {
break;
}
if (msrop->msr_op_type == (uint8_t)MSR_OP_WRITE) {
msr_write(msrop->msr_id, msrop->value);
dev_dbg(DBG_LEVEL_PROFILING,
"%s: MSRWRITE cpu%d, msr_id=0x%x, msr_val=0x%lx",
__func__, get_pcpu_id(), msrop->msr_id, msrop->value);
}
}
}
ss->pmu_state = PMU_RUNNING;
dev_dbg(DBG_LEVEL_PROFILING, "%s: exiting cpu%d",
__func__, get_pcpu_id());
}
/*
* Disable all Performance Monitoring Control registers
*/
static void profiling_disable_pmu(void)
{
uint32_t lvt_perf_ctr;
uint32_t i;
uint32_t group_id;
struct profiling_msr_op *msrop = NULL;
struct sep_state *ss = &get_cpu_var(profiling_info.s_state);
dev_dbg(DBG_LEVEL_PROFILING, "%s: entering cpu%d",
__func__, get_pcpu_id());
if (ss != NULL) {
if (ss->vmexit_msr_cnt != 0U) {
/* Restore the msr exit loading list of HV */
struct acrn_vcpu *vcpu = get_ever_run_vcpu(get_pcpu_id());
exec_vmwrite64(VMX_EXIT_MSR_LOAD_ADDR_FULL, hva2hpa(vcpu->arch.msr_area.host));
exec_vmwrite32(VMX_EXIT_MSR_LOAD_COUNT, MAX_HV_MSR_LIST_NUM);
ss->vmexit_msr_cnt = 0U;
}
group_id = ss->current_pmi_group_id;
for (i = 0U; i < MAX_MSR_LIST_NUM; i++) {
msrop = &(ss->pmi_stop_msr_list[group_id][i]);
if (msrop != NULL) {
if (msrop->msr_id == (uint32_t)-1) {
break;
}
if (msrop->msr_op_type == (uint8_t)MSR_OP_WRITE) {
msr_write(msrop->msr_id, msrop->value);
dev_dbg(DBG_LEVEL_PROFILING,
"%s: MSRWRITE cpu%d, msr_id=0x%x, msr_val=0x%lx",
__func__, get_pcpu_id(), msrop->msr_id, msrop->value);
}
}
}
/* Mask LAPIC LVT entry for PMC register */
lvt_perf_ctr = (uint32_t) msr_read(MSR_IA32_EXT_APIC_LVT_PMI);
lvt_perf_ctr |= LVT_PERFCTR_BIT_MASK;
msr_write(MSR_IA32_EXT_APIC_LVT_PMI, lvt_perf_ctr);
ss->pmu_state = PMU_SETUP;
dev_dbg(DBG_LEVEL_PROFILING, "%s: exiting cpu%d",
__func__, get_pcpu_id());
} else {
dev_dbg(DBG_LEVEL_ERR_PROFILING, "%s: exiting cpu%d",
__func__, get_pcpu_id());
}
}
/*
* Writes specified size of data into sbuf
*/
static int32_t profiling_sbuf_put_variable(struct shared_buf *sbuf,
uint8_t *data, uint32_t size)
{
uint32_t remaining_space, offset, next_tail;
void *to;
/*
* 1. check for null pointers and non-zero size
* 2. check if enough room available in the buffer
* 2a. if not, drop the sample, increment count of dropped samples,
* return
* 2b. unless overwrite flag is enabled
* 3. Continue if buffer has space for the sample
* 4. Copy sample to buffer
* 4a. Split variable sample to be copied if the sample is going to
* wrap around the buffer
* 4b. Otherwise do a simple copy
* 5. return number of bytes of data put in buffer
*/
if ((sbuf == NULL) || (data == NULL)) {
return -EINVAL;
}
if (size == 0U) {
return 0;
}
stac();
if (sbuf->tail >= sbuf->head) {
remaining_space = sbuf->size - (sbuf->tail - sbuf->head);
} else {
remaining_space = sbuf->head - sbuf->tail;
}
if (size >= remaining_space) {
/* Only (remaining_space - 1) can be written to sbuf.
* Since if the next_tail equals head, then it is assumed
* that buffer is empty, not full
*/
clac();
return 0;
}
next_tail = sbuf_next_ptr(sbuf->tail, size, sbuf->size);
to = (void *)sbuf + SBUF_HEAD_SIZE + sbuf->tail;
if (next_tail < sbuf->tail) { /* wrap-around */
offset = sbuf->size - sbuf->tail;
(void)memcpy_s(to, offset, data, offset);
/* 2nd part */
to = (void *)sbuf + SBUF_HEAD_SIZE;
if ((size - offset) > 0U) {
(void)memcpy_s(to, size - offset,
data + offset, size - offset);
}
} else {
(void)memcpy_s(to, size, data, size);
}
sbuf->tail = next_tail;
clac();
return (int32_t)size;
}
/*
* Read profiling data and transferred to Service VM
* Drop transfer of profiling data if sbuf is full/insufficient and log it
*/
static int32_t profiling_generate_data(int32_t collector, uint32_t type)
{
uint32_t remaining_space = 0U;
int32_t ret = 0;
struct data_header pkt_header;
uint64_t payload_size = 0UL;
void *payload = NULL;
struct shared_buf *sbuf = NULL;
struct sep_state *ss = &(get_cpu_var(profiling_info.s_state));
struct sw_msr_op_info *sw_msrop
= &(get_cpu_var(profiling_info.sw_msr_info));
uint64_t rflags;
spinlock_t *sw_lock = NULL;
dev_dbg(DBG_LEVEL_PROFILING, "%s: entering cpu%d",
__func__, get_pcpu_id());
if (collector == COLLECT_PROFILE_DATA) {
sbuf = per_cpu(sbuf, get_pcpu_id())[ACRN_SEP];
if (sbuf == NULL) {
ss->samples_dropped++;
dev_dbg(DBG_LEVEL_PROFILING, "%s: sbuf is NULL exiting cpu%d",
__func__, get_pcpu_id());
return 0;
}
if (ss->pmu_state == PMU_RUNNING) {
stac();
if (sbuf->tail >= sbuf->head) {
remaining_space = sbuf->size
- (sbuf->tail - sbuf->head);
} else {
remaining_space = sbuf->head - sbuf->tail;
}
clac();
/* populate the data header */
pkt_header.tsc = cpu_ticks();
pkt_header.collector_id = collector;
pkt_header.cpu_id = get_pcpu_id();
pkt_header.data_type = 1U << type;
pkt_header.reserved = MAGIC_NUMBER;
switch (type) {
case CORE_PMU_SAMPLING:
payload_size = CORE_PMU_SAMPLE_SIZE;
payload = &get_cpu_var(profiling_info.p_sample);
break;
case LBR_PMU_SAMPLING:
payload_size = CORE_PMU_SAMPLE_SIZE
+ LBR_PMU_SAMPLE_SIZE;
payload = &get_cpu_var(profiling_info.p_sample);
break;
case VM_SWITCH_TRACING:
payload_size = VM_SWITCH_TRACE_SIZE;
payload = &get_cpu_var(profiling_info.vm_trace);
break;
default:
pr_err("%s: unknown data type %u on cpu %d",
__func__, type, get_pcpu_id());
ret = -1;
break;
}
if (ret == -1) {
return 0;
}
pkt_header.payload_size = payload_size;
if ((uint64_t)remaining_space < (DATA_HEADER_SIZE + payload_size)) {
ss->samples_dropped++;
dev_dbg(DBG_LEVEL_PROFILING,
"%s: not enough space left in sbuf[%d: %d] exiting cpu%d",
__func__, remaining_space,
DATA_HEADER_SIZE + payload_size, get_pcpu_id());
return 0;
}
(void)sbuf_put_many(sbuf, SEP_BUF_ENTRY_SIZE, (uint8_t *)&pkt_header, sizeof(pkt_header));
(void)sbuf_put_many(sbuf, SEP_BUF_ENTRY_SIZE, (uint8_t *)payload, payload_size);
ss->samples_logged++;
}
} else if (collector == COLLECT_POWER_DATA) {
sbuf = per_cpu(sbuf, get_pcpu_id())[ACRN_SOCWATCH];
if (sbuf == NULL) {
dev_dbg(DBG_LEVEL_PROFILING,
"%s: socwatch buffers not initialized?", __func__);
return 0;
}
sw_lock = &(get_cpu_var(profiling_info.sw_lock));
spinlock_irqsave_obtain(sw_lock, &rflags);
stac();
if (sbuf->tail >= sbuf->head) {
remaining_space
= sbuf->size - (sbuf->tail - sbuf->head);
} else {
remaining_space = sbuf->head - sbuf->tail;
}
clac();
/* populate the data header */
pkt_header.tsc = cpu_ticks();
pkt_header.collector_id = collector;
pkt_header.cpu_id = get_pcpu_id();
pkt_header.data_type = (uint16_t)type;
switch (type) {
case SOCWATCH_MSR_OP:
dev_dbg(DBG_LEVEL_PROFILING,
"%s: generating cstate/pstate sample socwatch cpu %d",
__func__, sw_msrop->cpu_id);
pkt_header.cpu_id = (uint16_t)sw_msrop->cpu_id;
pkt_header.data_type = sw_msrop->sample_id;
payload_size
= ((uint64_t)sw_msrop->valid_entries) * sizeof(uint64_t);
payload = &(sw_msrop->core_msr[0]);
break;
case SOCWATCH_VM_SWITCH_TRACING:
dev_dbg(DBG_LEVEL_PROFILING,
"%s: generating vm-switch sample", __func__);
payload_size = VM_SWITCH_TRACE_SIZE;
payload = &get_cpu_var(profiling_info.vm_trace);
break;
default:
pr_err("%s: unknown data type %u on cpu %d",
__func__, type, get_pcpu_id());
ret = -1;
break;
}
if (ret == -1) {
return 0;
}
pkt_header.payload_size = payload_size;
if ((DATA_HEADER_SIZE + payload_size) >= (uint64_t)remaining_space) {
pr_err("%s: not enough space in socwatch buffer on cpu %d",
__func__, get_pcpu_id());
return 0;
}
/* copy header */
(void)profiling_sbuf_put_variable(sbuf,
(uint8_t *)&pkt_header, (uint32_t)DATA_HEADER_SIZE);
/* copy payload */
(void)profiling_sbuf_put_variable(sbuf,
(uint8_t *)payload, (uint32_t)payload_size);
spinlock_irqrestore_release(sw_lock, rflags);
} else {
dev_dbg(DBG_LEVEL_ERR_PROFILING,
"%s: Unknown collector type", __func__);
return 0;
}
return 0;
}
/*
* Performs MSR operations - read, write and clear
*/
static void profiling_handle_msrops(void)
{
uint32_t i, j;
struct profiling_msr_ops_list *my_msr_node
= get_cpu_var(profiling_info.msr_node);
struct sw_msr_op_info *sw_msrop
= &(get_cpu_var(profiling_info.sw_msr_info));
dev_dbg(DBG_LEVEL_PROFILING, "%s: entering cpu%d",
__func__, get_pcpu_id());
if ((my_msr_node == NULL) ||
(my_msr_node->msr_op_state != (int32_t)MSR_OP_REQUESTED)) {
dev_dbg(DBG_LEVEL_PROFILING, "%s: invalid my_msr_node on cpu%d",
__func__, get_pcpu_id());
return;
}
if ((my_msr_node->num_entries == 0U) ||
(my_msr_node->num_entries >= MAX_MSR_LIST_NUM)) {
dev_dbg(DBG_LEVEL_PROFILING,
"%s: invalid num_entries on cpu%d",
__func__, get_pcpu_id());
return;
}
for (i = 0U; i < my_msr_node->num_entries; i++) {
switch (my_msr_node->entries[i].msr_op_type) {
case MSR_OP_READ:
my_msr_node->entries[i].value
= msr_read(my_msr_node->entries[i].msr_id);
dev_dbg(DBG_LEVEL_PROFILING,
"%s: MSRREAD cpu%d, msr_id=0x%x, msr_val=0x%lx",
__func__, get_pcpu_id(), my_msr_node->entries[i].msr_id,
my_msr_node->entries[i].value);
break;
case MSR_OP_READ_CLEAR:
my_msr_node->entries[i].value
= msr_read(my_msr_node->entries[i].msr_id);
dev_dbg(DBG_LEVEL_PROFILING,
"%s: MSRREADCLEAR cpu%d, msr_id=0x%x, msr_val=0x%lx",
__func__, get_pcpu_id(), my_msr_node->entries[i].msr_id,
my_msr_node->entries[i].value);
msr_write(my_msr_node->entries[i].msr_id, 0U);
break;
case MSR_OP_WRITE:
msr_write(my_msr_node->entries[i].msr_id,
my_msr_node->entries[i].value);
dev_dbg(DBG_LEVEL_PROFILING,
"%s: MSRWRITE cpu%d, msr_id=0x%x, msr_val=0x%lx",
__func__, get_pcpu_id(), my_msr_node->entries[i].msr_id,
my_msr_node->entries[i].value);
break;
default:
pr_err("%s: unknown MSR op_type %u on cpu %d",
__func__, my_msr_node->entries[i].msr_op_type,
get_pcpu_id());
break;
}
}
my_msr_node->msr_op_state = (int32_t)MSR_OP_HANDLED;
/* Also generates sample */
if ((my_msr_node->collector_id == COLLECT_POWER_DATA) &&
(sw_msrop != NULL)) {
sw_msrop->cpu_id = get_pcpu_id();
sw_msrop->valid_entries = my_msr_node->num_entries;
/*
* if 'param' is 0, then skip generating a sample since it is
* an immediate MSR read operation.
*/
if (my_msr_node->entries[0].param != 0UL) {
for (j = 0U; j < my_msr_node->num_entries; ++j) {
sw_msrop->core_msr[j]
= my_msr_node->entries[j].value;
/*
* socwatch uses the 'param' field to store the
* sample id needed by socwatch to identify the
* type of sample during post-processing
*/
sw_msrop->sample_id
= my_msr_node->entries[j].param;
}
/* generate sample */
(void)profiling_generate_data(COLLECT_POWER_DATA,
SOCWATCH_MSR_OP);
}
my_msr_node->msr_op_state = (int32_t)MSR_OP_REQUESTED;
}
dev_dbg(DBG_LEVEL_PROFILING, "%s: exiting cpu%d",
__func__, get_pcpu_id());
}
/*
* Interrupt handler for performance monitoring interrupts
*/
static void profiling_pmi_handler(uint32_t irq, __unused void *data)
{
uint64_t perf_ovf_status;
uint32_t lvt_perf_ctr;
uint32_t i;
uint32_t group_id;
struct profiling_msr_op *msrop = NULL;
struct pmu_sample *psample = &(get_cpu_var(profiling_info.p_sample));
struct sep_state *ss = &(get_cpu_var(profiling_info.s_state));
if ((ss == NULL) || (psample == NULL)) {
dev_dbg(DBG_LEVEL_ERR_PROFILING, "%s: exiting cpu%d",
__func__, get_pcpu_id());
return;
}
/* Stop all the counters first */
msr_write(MSR_IA32_PERF_GLOBAL_CTRL, 0x0U);
group_id = ss->current_pmi_group_id;
for (i = 0U; i < MAX_MSR_LIST_NUM; i++) {
msrop = &(ss->pmi_entry_msr_list[group_id][i]);
if (msrop != NULL) {
if (msrop->msr_id == (uint32_t)-1) {
break;
}
if (msrop->msr_op_type == (uint8_t)MSR_OP_WRITE) {
msr_write(msrop->msr_id, msrop->value);
}
}
}
ss->total_pmi_count++;
perf_ovf_status = msr_read(MSR_IA32_PERF_GLOBAL_STATUS);
lvt_perf_ctr = (uint32_t)msr_read(MSR_IA32_EXT_APIC_LVT_PMI);
if (perf_ovf_status == 0U) {
goto reconfig;
}
if ((perf_ovf_status & 0x80000000000000FULL) == 0U) {
ss->nofrozen_pmi++;
}
(void)memset(psample, 0U, sizeof(struct pmu_sample));
/* Attribute PMI to guest context */
if ((get_cpu_var(profiling_info.vm_info).vmexit_reason
== VMX_EXIT_REASON_EXTERNAL_INTERRUPT) &&
((uint64_t)get_cpu_var(profiling_info.vm_info).external_vector
== PMI_VECTOR)) {
psample->csample.os_id
= get_cpu_var(profiling_info.vm_info).guest_vm_id;
(void)memset(psample->csample.task, 0U, 16);
psample->csample.cpu_id = get_pcpu_id();
psample->csample.process_id = 0U;
psample->csample.task_id = 0U;
psample->csample.overflow_status = perf_ovf_status;
psample->csample.rip = get_cpu_var(profiling_info.vm_info).guest_rip;
psample->csample.rflags
= (uint32_t)get_cpu_var(profiling_info.vm_info).guest_rflags;
psample->csample.cs
= (uint32_t)get_cpu_var(profiling_info.vm_info).guest_cs;
get_cpu_var(profiling_info.vm_info).vmexit_reason = 0U;
get_cpu_var(profiling_info.vm_info).external_vector = -1;
/* Attribute PMI to hypervisor context */
} else {
const struct x86_irq_data *irqd = irq_desc_array[irq].arch_data;
psample->csample.os_id = 0xFFFFU;
(void)memcpy_s(psample->csample.task, 16, "VMM\0", 4);
psample->csample.cpu_id = get_pcpu_id();
psample->csample.process_id = 0U;
psample->csample.task_id = 0U;
psample->csample.overflow_status = perf_ovf_status;
psample->csample.rip = irqd->ctx_rip;
psample->csample.rflags = (uint32_t)irqd->ctx_rflags;
psample->csample.cs = (uint32_t)irqd->ctx_cs;
}
if ((sep_collection_switch &
(1UL << (uint64_t)LBR_PMU_SAMPLING)) > 0UL) {
psample->lsample.lbr_tos = msr_read(MSR_CORE_LASTBRANCH_TOS);
for (i = 0U; i < LBR_NUM_REGISTERS; i++) {
psample->lsample.lbr_from_ip[i]
= msr_read(MSR_CORE_LASTBRANCH_0_FROM_IP + i);
psample->lsample.lbr_to_ip[i]
= msr_read(MSR_CORE_LASTBRANCH_0_TO_IP + i);
}
/* Generate core pmu sample and lbr data */
(void)profiling_generate_data(COLLECT_PROFILE_DATA, LBR_PMU_SAMPLING);
} else {
/* Generate core pmu sample only */
(void)profiling_generate_data(COLLECT_PROFILE_DATA, CORE_PMU_SAMPLING);
}
/* Clear PERF_GLOBAL_OVF_STATUS bits */
msr_write(MSR_IA32_PERF_GLOBAL_OVF_CTRL,
perf_ovf_status & PERF_OVF_BIT_MASK);
ss->valid_pmi_count++;
group_id = ss->current_pmi_group_id;
for (i = 0U; i < MAX_MSR_LIST_NUM; i++) {
msrop = &(ss->pmi_exit_msr_list[group_id][i]);
if (msrop != NULL) {
if (msrop->msr_id == (uint32_t)-1) {
break;
}
if (msrop->msr_op_type == (uint8_t)MSR_OP_WRITE) {
if (msrop->reg_type != (uint8_t)PMU_MSR_DATA) {
if (msrop->msr_id != MSR_IA32_PERF_GLOBAL_CTRL) {
msr_write(msrop->msr_id, msrop->value);
}
} else {
if (((perf_ovf_status >> msrop->param) & 0x1U) > 0U) {
msr_write(msrop->msr_id, msrop->value);
}
}
}
}
}
reconfig:
if (ss->pmu_state == PMU_RUNNING) {
/* Unmask the interrupt */
lvt_perf_ctr &= LVT_PERFCTR_BIT_UNMASK;
msr_write(MSR_IA32_EXT_APIC_LVT_PMI, lvt_perf_ctr);
group_id = ss->current_pmi_group_id;
for (i = 0U; i < MAX_MSR_LIST_NUM; i++) {
msrop = &(ss->pmi_start_msr_list[group_id][i]);
if (msrop != NULL) {
if (msrop->msr_id == (uint32_t)-1) {
break;
}
if (msrop->msr_op_type == (uint8_t)MSR_OP_WRITE) {
msr_write(msrop->msr_id, msrop->value);
}
}
}
} else {
/* Mask the interrupt */
lvt_perf_ctr |= LVT_PERFCTR_BIT_MASK;
msr_write(MSR_IA32_EXT_APIC_LVT_PMI, lvt_perf_ctr);
}
}
/*
* Initialize sep state and enable PMU counters
*/
static void profiling_start_pmu(void)
{
uint16_t i;
uint16_t pcpu_nums = get_pcpu_nums();
dev_dbg(DBG_LEVEL_PROFILING, "%s: entering", __func__);
if (in_pmu_profiling) {
return;
}
for (i = 0U; i < pcpu_nums; i++) {
if (per_cpu(profiling_info.s_state, i).pmu_state != PMU_SETUP) {
pr_err("%s: invalid pmu_state %u on cpu%d",
__func__, get_cpu_var(profiling_info.s_state).pmu_state, i);
return;
}
}
for (i = 0U; i < pcpu_nums; i++) {
per_cpu(profiling_info.ipi_cmd, i) = IPI_PMU_START;
per_cpu(profiling_info.s_state, i).samples_logged = 0U;
per_cpu(profiling_info.s_state, i).samples_dropped = 0U;
per_cpu(profiling_info.s_state, i).valid_pmi_count = 0U;
per_cpu(profiling_info.s_state, i).total_pmi_count = 0U;
per_cpu(profiling_info.s_state, i).total_vmexit_count = 0U;
per_cpu(profiling_info.s_state, i).frozen_well = 0U;
per_cpu(profiling_info.s_state, i).frozen_delayed = 0U;
per_cpu(profiling_info.s_state, i).nofrozen_pmi = 0U;
per_cpu(profiling_info.s_state, i).pmu_state = PMU_RUNNING;
}
smp_call_function(get_active_pcpu_bitmap(), profiling_ipi_handler, NULL);
in_pmu_profiling = true;
dev_dbg(DBG_LEVEL_PROFILING, "%s: done", __func__);
}
/*
* Reset sep state and Disable all the PMU counters
*/
static void profiling_stop_pmu(void)
{
uint16_t i;
uint16_t pcpu_nums = get_pcpu_nums();
dev_dbg(DBG_LEVEL_PROFILING, "%s: entering", __func__);
if (in_pmu_profiling) {
for (i = 0U; i < pcpu_nums; i++) {
per_cpu(profiling_info.ipi_cmd, i) = IPI_PMU_STOP;
if (per_cpu(profiling_info.s_state, i).pmu_state == PMU_RUNNING) {
per_cpu(profiling_info.s_state, i).pmu_state = PMU_SETUP;
}
dev_dbg(DBG_LEVEL_PROFILING,
"%s: pmi_cnt[%d] = total:%u valid=%u, vmexit_cnt=%u",
__func__, i, per_cpu(profiling_info.s_state, i).total_pmi_count,
per_cpu(profiling_info.s_state, i).valid_pmi_count,
per_cpu(profiling_info.s_state, i).total_vmexit_count);
dev_dbg(DBG_LEVEL_PROFILING,
"%s: cpu%d frozen well:%u frozen delayed=%u, nofrozen_pmi=%u",
__func__, i, per_cpu(profiling_info.s_state, i).frozen_well,
per_cpu(profiling_info.s_state, i).frozen_delayed,
per_cpu(profiling_info.s_state, i).nofrozen_pmi);
dev_dbg(DBG_LEVEL_PROFILING,
"%s: cpu%d samples captured:%u samples dropped=%u",
__func__, i, per_cpu(profiling_info.s_state, i).samples_logged,
per_cpu(profiling_info.s_state, i).samples_dropped);
}
smp_call_function(get_active_pcpu_bitmap(), profiling_ipi_handler, NULL);
in_pmu_profiling = false;
dev_dbg(DBG_LEVEL_PROFILING, "%s: done.", __func__);
}
}
/*
* Performs MSR operations on all the CPU's
*/
int32_t profiling_msr_ops_all_cpus(struct acrn_vm *vm, uint64_t addr)
{
uint16_t i;
struct profiling_msr_ops_list msr_list[MAX_PCPU_NUM];
uint16_t pcpu_nums = get_pcpu_nums();
dev_dbg(DBG_LEVEL_PROFILING, "%s: entering", __func__);
if (copy_from_gpa(vm, &msr_list, addr, (uint32_t)pcpu_nums * sizeof(struct profiling_msr_ops_list)) != 0) {
return -EINVAL;
}
for (i = 0U; i < pcpu_nums; i++) {
per_cpu(profiling_info.ipi_cmd, i) = IPI_MSR_OP;
per_cpu(profiling_info.msr_node, i) = &(msr_list[i]);
}
smp_call_function(get_active_pcpu_bitmap(), profiling_ipi_handler, NULL);
if (copy_to_gpa(vm, &msr_list, addr, sizeof(msr_list)) != 0) {
return -EINVAL;
}
dev_dbg(DBG_LEVEL_PROFILING, "%s: exiting", __func__);
return 0;
}
/*
* Generate VM info list
*/
int32_t profiling_vm_list_info(struct acrn_vm *vm, uint64_t addr)
{
struct acrn_vm *tmp_vm;
struct acrn_vcpu *vcpu;
int32_t vm_idx;
uint16_t i, j;
struct profiling_vm_info_list vm_info_list;
uint16_t pcpu_nums = get_pcpu_nums();
dev_dbg(DBG_LEVEL_PROFILING, "%s: entering", __func__);
if (copy_from_gpa(vm, &vm_info_list, addr, sizeof(vm_info_list)) != 0) {
return -EINVAL;
}
vm_idx = 0;
vm_info_list.vm_list[vm_idx].vm_id_num = -1;
(void)memcpy_s((void *)vm_info_list.vm_list[vm_idx].vm_name, 4U, "VMM\0", 4U);
for (i = 0U; i < pcpu_nums; i++) {
vm_info_list.vm_list[vm_idx].cpu_map[i].vcpu_id = i;
vm_info_list.vm_list[vm_idx].cpu_map[i].pcpu_id = i;
vm_info_list.vm_list[vm_idx].cpu_map[i].apic_id
= per_cpu(lapic_id, i);
}
vm_info_list.vm_list[vm_idx].num_vcpus = i;
vm_info_list.num_vms = 1;
for (j = 0U; j < CONFIG_MAX_VM_NUM; j++) {
tmp_vm = get_vm_from_vmid(j);
if (is_poweroff_vm(tmp_vm)) {
break;
}
vm_info_list.num_vms++;
vm_idx++;
vm_info_list.vm_list[vm_idx].vm_id_num = tmp_vm->vm_id;
snprintf(vm_info_list.vm_list[vm_idx].vm_name, 16U, "vm_%d",
tmp_vm->vm_id, 16U);
vm_info_list.vm_list[vm_idx].num_vcpus = 0;
i = 0U;
foreach_vcpu(i, tmp_vm, vcpu) {
vm_info_list.vm_list[vm_idx].cpu_map[i].vcpu_id
= vcpu->vcpu_id;
vm_info_list.vm_list[vm_idx].cpu_map[i].pcpu_id
= pcpuid_from_vcpu(vcpu);
vm_info_list.vm_list[vm_idx].cpu_map[i].apic_id = 0;
vm_info_list.vm_list[vm_idx].num_vcpus++;
}
}
if (copy_to_gpa(vm, &vm_info_list, addr, sizeof(vm_info_list)) != 0) {
return -EINVAL;
}
dev_dbg(DBG_LEVEL_PROFILING, "%s: exiting", __func__);
return 0;
}
/*
* Sep/socwatch profiling version
*/
int32_t profiling_get_version_info(struct acrn_vm *vm, uint64_t addr)
{
struct profiling_version_info ver_info;
dev_dbg(DBG_LEVEL_PROFILING, "%s: entering", __func__);
if (copy_from_gpa(vm, &ver_info, addr, sizeof(ver_info)) != 0) {
return -EINVAL;
}
ver_info.major = MAJOR_VERSION;
ver_info.minor = MINOR_VERSION;
ver_info.supported_features = (int64_t)
((1U << (uint64_t)CORE_PMU_SAMPLING) |
(1U << (uint64_t)CORE_PMU_COUNTING) |
(1U << (uint64_t)LBR_PMU_SAMPLING) |
(1U << (uint64_t)VM_SWITCH_TRACING));
if (copy_to_gpa(vm, &ver_info, addr, sizeof(ver_info)) != 0) {
return -EINVAL;
}
dev_dbg(DBG_LEVEL_PROFILING, "%s: exiting", __func__);
return 0;
}
/*
* Gets type of profiling - sep/socwatch
*/
int32_t profiling_get_control(struct acrn_vm *vm, uint64_t addr)
{
struct profiling_control prof_control;
dev_dbg(DBG_LEVEL_PROFILING, "%s: entering", __func__);
if (copy_from_gpa(vm, &prof_control, addr, sizeof(prof_control)) != 0) {
return -EINVAL;
}
switch (prof_control.collector_id) {
case COLLECT_PROFILE_DATA:
prof_control.switches = sep_collection_switch;
break;
case COLLECT_POWER_DATA:
break;
default:
pr_err("%s: unknown collector %d",
__func__, prof_control.collector_id);
break;
}
if (copy_to_gpa(vm, &prof_control, addr, sizeof(prof_control)) != 0) {
return -EINVAL;
}
dev_dbg(DBG_LEVEL_PROFILING, "%s: exiting", __func__);
return 0;
}
/*
* Update the profiling type based on control switch
*/
int32_t profiling_set_control(struct acrn_vm *vm, uint64_t addr)
{
uint64_t old_switch;
uint64_t new_switch;
uint16_t i;
uint16_t pcpu_nums = get_pcpu_nums();
struct profiling_control prof_control;
dev_dbg(DBG_LEVEL_PROFILING, "%s: entering", __func__);
if (copy_from_gpa(vm, &prof_control, addr, sizeof(prof_control)) != 0) {
return -EINVAL;
}
switch (prof_control.collector_id) {
case COLLECT_PROFILE_DATA:
old_switch = sep_collection_switch;
new_switch = prof_control.switches;
sep_collection_switch = prof_control.switches;
dev_dbg(DBG_LEVEL_PROFILING,
" old_switch: %lu sep_collection_switch: %lu!",
old_switch, sep_collection_switch);
for (i = 0U; i < (uint16_t)MAX_SEP_FEATURE_ID; i++) {
if (((new_switch ^ old_switch) & (0x1UL << i)) != 0UL) {
switch (i) {
case CORE_PMU_SAMPLING:
case CORE_PMU_COUNTING:
if ((new_switch & (0x1UL << i)) != 0UL) {
profiling_start_pmu();
} else {
profiling_stop_pmu();
}
break;
case LBR_PMU_SAMPLING:
break;
case VM_SWITCH_TRACING:
break;
default:
dev_dbg(DBG_LEVEL_PROFILING,
"%s: feature not supported %u",
__func__, i);
break;
}
}
}
break;
case COLLECT_POWER_DATA:
dev_dbg(DBG_LEVEL_PROFILING,
"%s: configuring socwatch", __func__);
socwatch_collection_switch = prof_control.switches;
dev_dbg(DBG_LEVEL_PROFILING,
"socwatch_collection_switch: %lu!",
socwatch_collection_switch);
if (socwatch_collection_switch != 0UL) {
dev_dbg(DBG_LEVEL_PROFILING,
"%s: socwatch start collection invoked!", __func__);
for (i = 0U; i < (uint16_t)MAX_SOCWATCH_FEATURE_ID; i++) {
if ((socwatch_collection_switch & (0x1UL << i)) != 0UL) {
switch (i) {
case SOCWATCH_COMMAND:
break;
case SOCWATCH_VM_SWITCH_TRACING:
dev_dbg(DBG_LEVEL_PROFILING,
"%s: socwatch vm-switch feature requested!",
__func__);
break;
default:
dev_dbg(DBG_LEVEL_PROFILING,
"%s: socwatch feature not supported %u",
__func__, i);
break;
}
}
}
for (i = 0U; i < pcpu_nums ; i++) {
per_cpu(profiling_info.soc_state, i)
= SW_RUNNING;
}
} else { /* stop socwatch collection */
dev_dbg(DBG_LEVEL_PROFILING,
"%s: socwatch stop collection invoked or collection switch not set!",
__func__);
for (i = 0U; i < pcpu_nums ; i++) {
per_cpu(profiling_info.soc_state, i)
= SW_STOPPED;
}
}
break;
default:
pr_err("%s: unknown collector %d",
__func__, prof_control.collector_id);
break;
}
if (copy_to_gpa(vm, &prof_control, addr, sizeof(prof_control)) != 0) {
return -EINVAL;
}
dev_dbg(DBG_LEVEL_PROFILING, "%s: exiting", __func__);
return 0;
}
/*
* Configure PMI on all cpus
*/
int32_t profiling_configure_pmi(struct acrn_vm *vm, uint64_t addr)
{
uint16_t i;
struct profiling_pmi_config pmi_config;
uint16_t pcpu_nums = get_pcpu_nums();
dev_dbg(DBG_LEVEL_PROFILING, "%s: entering", __func__);
if (copy_from_gpa(vm, &pmi_config, addr, sizeof(pmi_config)) != 0) {
return -EINVAL;
}
for (i = 0U; i < pcpu_nums; i++) {
if (!((per_cpu(profiling_info.s_state, i).pmu_state ==
PMU_INITIALIZED) ||
(per_cpu(profiling_info.s_state, i).pmu_state ==
PMU_SETUP))) {
pr_err("%s: invalid pmu_state %u on cpu%d",
__func__, per_cpu(profiling_info.s_state, i).pmu_state, i);
return -EINVAL;
}
}
if (pmi_config.num_groups == 0U ||
pmi_config.num_groups > MAX_GROUP_NUM) {
pr_err("%s: invalid num_groups %u",
__func__, pmi_config.num_groups);
return -EINVAL;
}
for (i = 0U; i < pcpu_nums; i++) {
per_cpu(profiling_info.ipi_cmd, i) = IPI_PMU_CONFIG;
per_cpu(profiling_info.s_state, i).num_pmi_groups
= pmi_config.num_groups;
(void)memcpy_s((void *)per_cpu(profiling_info.s_state, i).pmi_initial_msr_list,
sizeof(struct profiling_msr_op)*MAX_MSR_LIST_NUM*MAX_GROUP_NUM,
(void *)pmi_config.initial_list,
sizeof(struct profiling_msr_op)*MAX_MSR_LIST_NUM*MAX_GROUP_NUM);
(void)memcpy_s((void *)per_cpu(profiling_info.s_state, i).pmi_start_msr_list,
sizeof(struct profiling_msr_op)*MAX_MSR_LIST_NUM*MAX_GROUP_NUM,
(void *)pmi_config.start_list,
sizeof(struct profiling_msr_op)*MAX_MSR_LIST_NUM*MAX_GROUP_NUM);
(void)memcpy_s((void *)per_cpu(profiling_info.s_state, i).pmi_stop_msr_list,
sizeof(struct profiling_msr_op)*MAX_MSR_LIST_NUM*MAX_GROUP_NUM,
(void *)pmi_config.stop_list,
sizeof(struct profiling_msr_op)*MAX_MSR_LIST_NUM*MAX_GROUP_NUM);
(void)memcpy_s((void *)per_cpu(profiling_info.s_state, i).pmi_entry_msr_list,
sizeof(struct profiling_msr_op)*MAX_MSR_LIST_NUM*MAX_GROUP_NUM,
(void *)pmi_config.entry_list,
sizeof(struct profiling_msr_op)*MAX_MSR_LIST_NUM*MAX_GROUP_NUM);
(void)memcpy_s((void *)per_cpu(profiling_info.s_state, i).pmi_exit_msr_list,
sizeof(struct profiling_msr_op)*MAX_MSR_LIST_NUM*MAX_GROUP_NUM,
(void *)pmi_config.exit_list,
sizeof(struct profiling_msr_op)*MAX_MSR_LIST_NUM*MAX_GROUP_NUM);
}
smp_call_function(get_active_pcpu_bitmap(), profiling_ipi_handler, NULL);
if (copy_to_gpa(vm, &pmi_config, addr, sizeof(pmi_config)) != 0) {
return -EINVAL;
}
dev_dbg(DBG_LEVEL_PROFILING, "%s: exiting", __func__);
return 0;
}
/*
* Configure for VM-switch data on all cpus
*/
int32_t profiling_configure_vmsw(struct acrn_vm *vm, uint64_t addr)
{
uint16_t i;
int32_t ret = 0;
struct profiling_vmsw_config vmsw_config;
uint16_t pcpu_nums = get_pcpu_nums();
dev_dbg(DBG_LEVEL_PROFILING, "%s: entering", __func__);
if (copy_from_gpa(vm, &vmsw_config, addr, sizeof(vmsw_config)) != 0) {
return -EINVAL;
}
switch (vmsw_config.collector_id) {
case COLLECT_PROFILE_DATA:
for (i = 0U; i < pcpu_nums; i++) {
per_cpu(profiling_info.ipi_cmd, i) = IPI_VMSW_CONFIG;
(void)memcpy_s(
(void *)per_cpu(profiling_info.s_state, i).vmsw_initial_msr_list,
sizeof(struct profiling_msr_op)*MAX_MSR_LIST_NUM,
(void *)vmsw_config.initial_list,
sizeof(struct profiling_msr_op)*MAX_MSR_LIST_NUM);
(void)memcpy_s(
(void *)per_cpu(profiling_info.s_state, i).vmsw_entry_msr_list,
sizeof(struct profiling_msr_op)*MAX_MSR_LIST_NUM,
(void *)vmsw_config.entry_list,
sizeof(struct profiling_msr_op)*MAX_MSR_LIST_NUM);
(void)memcpy_s(
(void *)per_cpu(profiling_info.s_state, i).vmsw_exit_msr_list,
sizeof(struct profiling_msr_op)*MAX_MSR_LIST_NUM,
(void *)vmsw_config.exit_list,
sizeof(struct profiling_msr_op)*MAX_MSR_LIST_NUM);
}
smp_call_function(get_active_pcpu_bitmap(), profiling_ipi_handler, NULL);
break;
case COLLECT_POWER_DATA:
break;
default:
pr_err("%s: unknown collector %d",
__func__, vmsw_config.collector_id);
ret = -EINVAL;
break;
}
if (copy_to_gpa(vm, &vmsw_config, addr, sizeof(vmsw_config)) != 0) {
return -EINVAL;
}
dev_dbg(DBG_LEVEL_PROFILING, "%s: exiting", __func__);
return ret;
}
/*
* Get the physical cpu id
*/
int32_t profiling_get_pcpu_id(struct acrn_vm *vm, uint64_t addr)
{
struct profiling_pcpuid pcpuid;
dev_dbg(DBG_LEVEL_PROFILING, "%s: entering", __func__);
if (copy_from_gpa(vm, &pcpuid, addr, sizeof(pcpuid)) != 0) {
return -EINVAL;
}
cpuid_subleaf(pcpuid.leaf, pcpuid.subleaf, &pcpuid.eax,
&pcpuid.ebx, &pcpuid.ecx, &pcpuid.edx);
if (copy_to_gpa(vm, &pcpuid, addr, sizeof(pcpuid)) != 0) {
return -EINVAL;
}
dev_dbg(DBG_LEVEL_PROFILING, "%s: exiting", __func__);
return 0;
}
/*
* Update collection statictics
*/
int32_t profiling_get_status_info(struct acrn_vm *vm, uint64_t gpa)
{
uint16_t i;
struct profiling_status pstats[MAX_PCPU_NUM];
uint16_t pcpu_nums = get_pcpu_nums();
dev_dbg(DBG_LEVEL_PROFILING, "%s: entering", __func__);
if (copy_from_gpa(vm, &pstats, gpa,
pcpu_nums*sizeof(struct profiling_status)) != 0) {
return -EINVAL;
}
for (i = 0U; i < pcpu_nums; i++) {
pstats[i].samples_logged =
per_cpu(profiling_info.s_state, i).samples_logged;
pstats[i].samples_dropped =
per_cpu(profiling_info.s_state, i).samples_dropped;
}
if (copy_to_gpa(vm, &pstats, gpa,
pcpu_nums*sizeof(struct profiling_status)) != 0) {
return -EINVAL;
}
dev_dbg(DBG_LEVEL_PROFILING, "%s: exiting", __func__);
return 0;
}
/*
* IPI interrupt handler function
*/
void profiling_ipi_handler(__unused void *data)
{
switch (get_cpu_var(profiling_info.ipi_cmd)) {
case IPI_PMU_START:
profiling_enable_pmu();
break;
case IPI_PMU_STOP:
profiling_disable_pmu();
break;
case IPI_MSR_OP:
profiling_handle_msrops();
break;
case IPI_PMU_CONFIG:
profiling_initialize_pmi();
break;
case IPI_VMSW_CONFIG:
profiling_initialize_vmsw();
break;
default:
pr_err("%s: unknown IPI command %d on cpu %d",
__func__, get_cpu_var(profiling_info.ipi_cmd), get_pcpu_id());
break;
}
get_cpu_var(profiling_info.ipi_cmd) = IPI_UNKNOWN;
}
/*
* Save the VCPU info on vmenter
*/
void profiling_vmenter_handler(__unused struct acrn_vcpu *vcpu)
{
if (((get_cpu_var(profiling_info.s_state).pmu_state == PMU_RUNNING) &&
((sep_collection_switch &
(1UL << (uint64_t)VM_SWITCH_TRACING)) > 0UL)) ||
((get_cpu_var(profiling_info.soc_state) == SW_RUNNING) &&
((socwatch_collection_switch &
(1UL << (uint64_t)SOCWATCH_VM_SWITCH_TRACING)) > 0UL))) {
get_cpu_var(profiling_info.vm_info).vmenter_tsc = cpu_ticks();
}
}
/*
* Save the VCPU info on vmexit
*/
void profiling_pre_vmexit_handler(struct acrn_vcpu *vcpu)
{
uint64_t exit_reason = 0UL;
exit_reason = vcpu->arch.exit_reason & 0xFFFFUL;
if ((get_cpu_var(profiling_info.s_state).pmu_state == PMU_RUNNING) ||
(get_cpu_var(profiling_info.soc_state) == SW_RUNNING)) {
get_cpu_var(profiling_info.vm_info).vmexit_tsc = cpu_ticks();
get_cpu_var(profiling_info.vm_info).vmexit_reason
= exit_reason;
if (exit_reason == VMX_EXIT_REASON_EXTERNAL_INTERRUPT) {
get_cpu_var(profiling_info.vm_info).external_vector
= (int32_t)(exec_vmread(VMX_EXIT_INT_INFO) & 0xFFUL);
} else {
get_cpu_var(profiling_info.vm_info).external_vector = -1;
}
get_cpu_var(profiling_info.vm_info).guest_rip
= vcpu_get_rip(vcpu);
get_cpu_var(profiling_info.vm_info).guest_rflags
= vcpu_get_rflags(vcpu);
get_cpu_var(profiling_info.vm_info).guest_cs
= exec_vmread64(VMX_GUEST_CS_SEL);
get_cpu_var(profiling_info.vm_info).guest_vm_id = (int16_t)vcpu->vm->vm_id;
}
}
/*
* Generate vmexit data
*/
void profiling_post_vmexit_handler(struct acrn_vcpu *vcpu)
{
per_cpu(profiling_info.s_state, pcpuid_from_vcpu(vcpu)).total_vmexit_count++;
if ((get_cpu_var(profiling_info.s_state).pmu_state == PMU_RUNNING) ||
(get_cpu_var(profiling_info.soc_state) == SW_RUNNING)) {
/* Generate vmswitch sample */
if (((sep_collection_switch &
(1UL << (uint64_t)VM_SWITCH_TRACING)) > 0UL) ||
((socwatch_collection_switch &
(1UL << (uint64_t)SOCWATCH_VM_SWITCH_TRACING)) > 0UL)) {
get_cpu_var(profiling_info.vm_trace).os_id
= vcpu->vm->vm_id;
get_cpu_var(profiling_info.vm_trace).vm_enter_tsc
= get_cpu_var(profiling_info.vm_info).vmenter_tsc;
get_cpu_var(profiling_info.vm_trace).vm_exit_tsc
= get_cpu_var(profiling_info.vm_info).vmexit_tsc;
get_cpu_var(profiling_info.vm_trace).vm_exit_reason
= get_cpu_var(profiling_info.vm_info).vmexit_reason;
if ((sep_collection_switch &
(1UL << (uint64_t)VM_SWITCH_TRACING)) > 0UL) {
(void)profiling_generate_data(COLLECT_PROFILE_DATA,
VM_SWITCH_TRACING);
}
if ((socwatch_collection_switch &
(1UL << (uint64_t)SOCWATCH_VM_SWITCH_TRACING)) > 0UL) {
(void)profiling_generate_data(COLLECT_POWER_DATA,
SOCWATCH_VM_SWITCH_TRACING);
}
}
}
}
/*
* Setup PMI irq vector
*/
void profiling_setup(void)
{
uint16_t cpu;
int32_t retval;
dev_dbg(DBG_LEVEL_PROFILING, "%s: entering", __func__);
cpu = get_pcpu_id();
/* support PMI notification, Service VM will register all CPU */
if ((cpu == BSP_CPU_ID) && (profiling_pmi_irq == IRQ_INVALID)) {
pr_info("%s: calling request_irq", __func__);
retval = request_irq(PMI_IRQ,
profiling_pmi_handler, NULL, IRQF_NONE);
if (retval < 0) {
pr_err("Failed to add PMI isr");
return;
}
profiling_pmi_irq = (uint32_t)retval;
}
per_cpu(profiling_info.s_state, cpu).valid_pmi_count = 0U;
per_cpu(profiling_info.s_state, cpu).total_pmi_count = 0U;
per_cpu(profiling_info.s_state, cpu).total_vmexit_count = 0U;
per_cpu(profiling_info.s_state, cpu).pmu_state = PMU_INITIALIZED;
per_cpu(profiling_info.s_state, cpu).vmexit_msr_cnt = 0U;
per_cpu(profiling_info.s_state, cpu).samples_logged = 0U;
per_cpu(profiling_info.s_state, cpu).samples_dropped = 0U;
per_cpu(profiling_info.s_state, cpu).frozen_well = 0U;
per_cpu(profiling_info.s_state, cpu).frozen_delayed = 0U;
per_cpu(profiling_info.s_state, cpu).nofrozen_pmi = 0U;
msr_write(MSR_IA32_EXT_APIC_LVT_PMI,
PMI_VECTOR | LVT_PERFCTR_BIT_MASK);
dev_dbg(DBG_LEVEL_PROFILING, "%s: exiting", __func__);
}
#endif