/* * Copyright (c) 1997, Stefan Esser * Copyright (c) 2000, Michael Smith * Copyright (c) 2011 NetApp, Inc. * Copyright (c) 2018 Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include static spinlock_t pci_device_lock; static uint32_t num_pci_pdev; static struct pci_pdev pci_pdev_array[CONFIG_MAX_PCI_DEV_NUM]; static void init_pdev(uint16_t pbdf); static uint32_t pci_pdev_calc_address(union pci_bdf bdf, uint32_t offset) { uint32_t addr = (uint32_t)bdf.value; addr <<= 8U; addr |= (offset | PCI_CFG_ENABLE); return addr; } uint32_t pci_pdev_read_cfg(union pci_bdf bdf, uint32_t offset, uint32_t bytes) { uint32_t addr; uint32_t val; addr = pci_pdev_calc_address(bdf, offset); spinlock_obtain(&pci_device_lock); /* Write address to ADDRESS register */ pio_write32(addr, (uint16_t)PCI_CONFIG_ADDR); /* Read result from DATA register */ switch (bytes) { case 1U: val = (uint32_t)pio_read8((uint16_t)PCI_CONFIG_DATA + ((uint16_t)offset & 3U)); break; case 2U: val = (uint32_t)pio_read16((uint16_t)PCI_CONFIG_DATA + ((uint16_t)offset & 2U)); break; default: val = pio_read32((uint16_t)PCI_CONFIG_DATA); break; } spinlock_release(&pci_device_lock); return val; } void pci_pdev_write_cfg(union pci_bdf bdf, uint32_t offset, uint32_t bytes, uint32_t val) { uint32_t addr; spinlock_obtain(&pci_device_lock); addr = pci_pdev_calc_address(bdf, offset); /* Write address to ADDRESS register */ pio_write32(addr, (uint16_t)PCI_CONFIG_ADDR); /* Write value to DATA register */ switch (bytes) { case 1U: pio_write8((uint8_t)val, (uint16_t)PCI_CONFIG_DATA + ((uint16_t)offset & 3U)); break; case 2U: pio_write16((uint16_t)val, (uint16_t)PCI_CONFIG_DATA + ((uint16_t)offset & 2U)); break; default: pio_write32(val, (uint16_t)PCI_CONFIG_DATA); break; } spinlock_release(&pci_device_lock); } /* enable: 1: enable INTx; 0: Disable INTx */ void enable_disable_pci_intx(union pci_bdf bdf, bool enable) { uint32_t cmd, new_cmd; /* Set or clear the INTXDIS bit in COMMAND register */ cmd = pci_pdev_read_cfg(bdf, PCIR_COMMAND, 2U); if (enable) { new_cmd = cmd & ~PCIM_CMD_INTxDIS; } else { new_cmd = cmd | PCIM_CMD_INTxDIS; } if ((cmd ^ new_cmd) != 0U) { pci_pdev_write_cfg(bdf, PCIR_COMMAND, 0x2U, new_cmd); } } #define BUS_SCAN_SKIP 0U #define BUS_SCAN_PENDING 1U #define BUS_SCAN_COMPLETE 2U void init_pci_pdev_list(void) { union pci_bdf pbdf; uint8_t hdr_type, secondary_bus, dev, func; uint32_t bus, val; uint8_t bus_to_scan[PCI_BUSMAX + 1] = { BUS_SCAN_SKIP }; /* start from bus 0 */ bus_to_scan[0U] = BUS_SCAN_PENDING; for (bus = 0U; bus <= PCI_BUSMAX; bus++) { if (bus_to_scan[bus] != BUS_SCAN_PENDING) { continue; } bus_to_scan[bus] = BUS_SCAN_COMPLETE; pbdf.bits.b = (uint8_t)bus; for (dev = 0U; dev <= PCI_SLOTMAX; dev++) { pbdf.bits.d = dev; for (func = 0U; func <= PCI_FUNCMAX; func++) { pbdf.bits.f = func; val = pci_pdev_read_cfg(pbdf, PCIR_VENDOR, 4U); if ((val == 0xFFFFFFFFU) || (val == 0U) || (val == 0xFFFF0000U) || (val == 0xFFFFU)) { /* If function 0 is not implemented, skip to next device */ if (func == 0U) { break; } /* continue scan next function */ continue; } /* if it is debug uart, hide it from SOS */ if (is_pci_dbg_uart(pbdf)) { pr_info("hide pci uart dev: (%x:%x:%x)", pbdf.bits.b, pbdf.bits.d, pbdf.bits.f); continue; } init_pdev(pbdf.value); hdr_type = (uint8_t)pci_pdev_read_cfg(pbdf, PCIR_HDRTYPE, 1U); if ((hdr_type & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE) { /* Secondary bus to be scanned */ secondary_bus = (uint8_t)pci_pdev_read_cfg(pbdf, PCIR_SECBUS_1, 1U); if (bus_to_scan[secondary_bus] != BUS_SCAN_SKIP) { pr_err("%s, bus %d may be downstream of different PCI bridges", __func__, secondary_bus); } else { bus_to_scan[secondary_bus] = BUS_SCAN_PENDING; } } } } } } static uint32_t pci_pdev_get_nr_bars(uint8_t hdr_type) { uint32_t nr_bars = 0U; switch (hdr_type & PCIM_HDRTYPE) { case PCIM_HDRTYPE_NORMAL: nr_bars = 6U; break; case PCIM_HDRTYPE_BRIDGE: nr_bars = 2U; break; case PCIM_HDRTYPE_CARDBUS: nr_bars = 1U; break; default: /*no actions are required for other cases.*/ break; } return nr_bars; } /* Get the base address of the raw bar value (val) */ static inline uint32_t pci_pdev_get_bar_base(uint32_t bar_val) { uint32_t base; union pci_bar_reg reg; /* set raw bar value */ reg.value = bar_val; /* Extract base address portion from the raw bar value */ if (reg.bits.io.is_io != 0U) { /* IO bar, BITS 31-2 = base address, 4-byte aligned */ base = (uint32_t)(reg.bits.io.base); base <<= 2U; } else { /* MMIO bar, BITS 31-4 = base address, 16-byte aligned */ base = (uint32_t)(reg.bits.mem.base); base <<= 4U; } return base; } /* * @pre bar != NULL */ static uint32_t pci_pdev_read_bar(union pci_bdf bdf, uint32_t idx, struct pci_bar *bar) { uint64_t base, size; enum pci_bar_type type; uint32_t bar_lo, bar_hi, size_lo; bar->reg.value = pci_pdev_read_cfg(bdf, pci_bar_offset(idx), 4U); base = 0UL; size = 0UL; type = pci_get_bar_type(bar->reg.value); bar_hi = 0U; if (type != PCIBAR_NONE) { bar_lo = pci_pdev_read_cfg(bdf, pci_bar_offset(idx), 4U); base = (uint64_t)pci_pdev_get_bar_base(bar_lo); if (type == PCIBAR_MEM64) { bar_hi = pci_pdev_read_cfg(bdf, pci_bar_offset(idx + 1U), 4U); base |= ((uint64_t)bar_hi << 32U); } if (base != 0UL) { /* Sizing the BAR */ if ((type == PCIBAR_MEM64) && (idx < (PCI_BAR_COUNT - 1U))) { pci_pdev_write_cfg(bdf, pci_bar_offset(idx + 1U), 4U, ~0U); size = (uint64_t)pci_pdev_read_cfg(bdf, pci_bar_offset(idx + 1U), 4U); size <<= 32U; } pci_pdev_write_cfg(bdf, pci_bar_offset(idx), 4U, ~0U); size_lo = pci_pdev_read_cfg(bdf, pci_bar_offset(idx), 4U); size |= (uint64_t)pci_pdev_get_bar_base(size_lo); if (size != 0UL) { size = size & ~(size - 1U); } /* Restore the BAR */ pci_pdev_write_cfg(bdf, pci_bar_offset(idx), 4U, bar_lo); if (type == PCIBAR_MEM64) { pci_pdev_write_cfg(bdf, pci_bar_offset(idx + 1U), 4U, bar_hi); } } } bar->size = size; bar->base_hpa = base; return (type == PCIBAR_MEM64)?2U:1U; } /* * @pre nr_bars <= PCI_BAR_COUNT */ static void pci_pdev_read_bars(union pci_bdf bdf, uint32_t nr_bars, struct pci_bar *bar) { uint32_t idx = 0U; uint32_t bar_step; while (idx < nr_bars) { bar_step = pci_pdev_read_bar(bdf, idx, &bar[idx]); if ((bar_step == 2U) && ((idx + 1U) < nr_bars)) { /* Upper 32-bit of a 64-bit bar: */ bar[idx + 1U].is_64bit_high = true; bar[idx + 1U].reg.value = pci_pdev_read_cfg(bdf, pci_bar_offset(idx + 1U), 4U); } idx += bar_step; } } /* * @pre ((hdr_type & PCIM_HDRTYPE) == PCIM_HDRTYPE_NORMAL) || ((hdr_type & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE) || ((hdr_type & PCIM_HDRTYPE) == PCIM_HDRTYPE_CARDBUS) */ static uint32_t get_offset_of_caplist(uint8_t hdr_type) { uint32_t cap_offset = 0U; switch (hdr_type & PCIM_HDRTYPE) { case PCIM_HDRTYPE_NORMAL: case PCIM_HDRTYPE_BRIDGE: cap_offset = PCIR_CAP_PTR; break; case PCIM_HDRTYPE_CARDBUS: cap_offset = PCIR_CAP_PTR_CARDBUS; break; default: /* do nothing */ break; } return cap_offset; } /* * @pre pdev != NULL * @pre ((hdr_type & PCIM_HDRTYPE) == PCIM_HDRTYPE_NORMAL) || ((hdr_type & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE) || ((hdr_type & PCIM_HDRTYPE) == PCIM_HDRTYPE_CARDBUS) */ static void pci_read_cap(struct pci_pdev *pdev, uint8_t hdr_type) { uint8_t ptr, cap; uint32_t msgctrl; uint32_t len, offset, idx; uint32_t table_info; uint32_t cap_offset; cap_offset = get_offset_of_caplist(hdr_type); ptr = (uint8_t)pci_pdev_read_cfg(pdev->bdf, cap_offset, 1U); while ((ptr != 0U) && (ptr != 0xFFU)) { cap = (uint8_t)pci_pdev_read_cfg(pdev->bdf, ptr + PCICAP_ID, 1U); /* Ignore all other Capability IDs for now */ if ((cap == PCIY_MSI) || (cap == PCIY_MSIX)) { offset = ptr; if (cap == PCIY_MSI) { pdev->msi.capoff = offset; msgctrl = pci_pdev_read_cfg(pdev->bdf, offset + PCIR_MSI_CTRL, 2U); len = ((msgctrl & PCIM_MSICTRL_64BIT) != 0U) ? 14U : 10U; pdev->msi.caplen = len; /* Copy MSI capability struct into buffer */ for (idx = 0U; idx < len; idx++) { pdev->msi.cap[idx] = (uint8_t)pci_pdev_read_cfg(pdev->bdf, offset + idx, 1U); } } else { pdev->msix.capoff = offset; pdev->msix.caplen = MSIX_CAPLEN; len = pdev->msix.caplen; msgctrl = pci_pdev_read_cfg(pdev->bdf, pdev->msix.capoff + PCIR_MSIX_CTRL, 2U); /* Read Table Offset and Table BIR */ table_info = pci_pdev_read_cfg(pdev->bdf, pdev->msix.capoff + PCIR_MSIX_TABLE, 4U); pdev->msix.table_bar = (uint8_t)(table_info & PCIM_MSIX_BIR_MASK); pdev->msix.table_offset = table_info & ~PCIM_MSIX_BIR_MASK; pdev->msix.table_count = (msgctrl & PCIM_MSIXCTRL_TABLE_SIZE) + 1U; ASSERT(pdev->msix.table_count <= CONFIG_MAX_MSIX_TABLE_NUM); /* Copy MSIX capability struct into buffer */ for (idx = 0U; idx < len; idx++) { pdev->msix.cap[idx] = (uint8_t)pci_pdev_read_cfg(pdev->bdf, offset + idx, 1U); } } } ptr = (uint8_t)pci_pdev_read_cfg(pdev->bdf, ptr + PCICAP_NEXTPTR, 1U); } } /* * @pre pdev != NULL */ static void fill_pdev(uint16_t pbdf, struct pci_pdev *pdev) { uint8_t hdr_type; pdev->bdf.value = pbdf; hdr_type = (uint8_t)pci_pdev_read_cfg(pdev->bdf, PCIR_HDRTYPE, 1U); pdev->nr_bars = pci_pdev_get_nr_bars(hdr_type); pci_pdev_read_bars(pdev->bdf, pdev->nr_bars, &pdev->bar[0]); if ((pci_pdev_read_cfg(pdev->bdf, PCIR_STATUS, 2U) & PCIM_STATUS_CAPPRESENT) != 0U) { pci_read_cap(pdev, hdr_type); } fill_pci_dev_config(pdev); } static void init_pdev(uint16_t pbdf) { if (num_pci_pdev < CONFIG_MAX_PCI_DEV_NUM) { fill_pdev(pbdf, &pci_pdev_array[num_pci_pdev]); num_pci_pdev++; } else { pr_err("%s, failed to alloc pci_pdev!\n", __func__); } }