/* * Copyright (C) 2018 Intel Corporation. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #define DBG_LEVEL_VMLOAD 6U /* Define a 32KB memory block to store LaaG VM load params in guest address space * The params including: * Init GDT entries : 1KB (must be 8byte aligned) * Linux Zeropage : 4KB * Boot cmdline : 2KB * EFI memory map : 12KB * Reserved region for trampoline code : 8KB * Each param should keep 8byte aligned and the total region size should be less than 32KB * so that it could be put below MEM_1M. * Please note in Linux VM, the last 8KB space below MEM_1M is for trampoline code. The block * should be able to accommodate it and so that avoid the trampoline corruption. */ #define BZIMG_LOAD_PARAMS_SIZE (MEM_4K * 8) #define BZIMG_INITGDT_GPA(load_params_gpa) (load_params_gpa + 0UL) #define BZIMG_ZEROPAGE_GPA(load_params_gpa) (load_params_gpa + MEM_1K) #define BZIMG_CMDLINE_GPA(load_params_gpa) (load_params_gpa + MEM_1K + MEM_4K) #define BZIMG_EFIMMAP_GPA(load_params_gpa) (load_params_gpa + MEM_1K + MEM_4K + MEM_2K) /* TODO: * The value is referenced from Linux boot protocal for old kernels, * but this should be configurable for different OS. */ #define DEFAULT_RAMDISK_GPA_MAX 0x37ffffffUL #define PRE_VM_MAX_RAM_ADDR_BELOW_4GB (VIRT_ACPI_DATA_ADDR - 1U) static void *get_initrd_load_addr(struct acrn_vm *vm, uint64_t kernel_start) { uint64_t ramdisk_load_gpa = INVALID_GPA; uint64_t ramdisk_gpa_max = DEFAULT_RAMDISK_GPA_MAX; struct zero_page *zeropage = (struct zero_page *)vm->sw.kernel_info.kernel_src_addr; uint32_t kernel_init_size, kernel_align, initrd_addr_max; uint64_t kernel_end; /* Per Linux boot protocol, the Kernel need a size of contiguous * memory(i.e. init_size field in zeropage) from its extract address to boot, * and initrd_addr_max field specifies the maximum address of the ramdisk. * Per kernel src head_64.S, decompressed kernel start at 2M aligned to the * compressed kernel load address. */ stac(); kernel_init_size = zeropage->hdr.init_size; kernel_align = zeropage->hdr.kernel_alignment; initrd_addr_max = zeropage->hdr.initrd_addr_max; stac(); kernel_end = roundup(kernel_start, kernel_align) + kernel_init_size; if (initrd_addr_max != 0U) { ramdisk_gpa_max = initrd_addr_max; } if (is_sos_vm(vm)) { uint64_t mods_start, mods_end; get_boot_mods_range(&mods_start, &mods_end); mods_start = sos_vm_hpa2gpa(mods_start); mods_end = sos_vm_hpa2gpa(mods_end); if (vm->sw.ramdisk_info.src_addr != NULL) { ramdisk_load_gpa = sos_vm_hpa2gpa((uint64_t)vm->sw.ramdisk_info.src_addr); } /* For SOS VM, the ramdisk has been loaded by bootloader, so in most cases * there is no need to do gpa copy again. But in the case that the ramdisk is * loaded by bootloader at a address higher than its limit, we should do gpa * copy then. */ if ((ramdisk_load_gpa + vm->sw.ramdisk_info.size) > ramdisk_gpa_max) { /* In this case, mods_end must be higher than ramdisk_gpa_max, * so try to locate ramdisk between MEM_1M and mods_start/kernel_start, * or try the range between kernel_end and mods_start; */ ramdisk_load_gpa = find_space_from_ve820(vm, vm->sw.ramdisk_info.size, MEM_1M, min(min(mods_start, kernel_start), ramdisk_gpa_max)); if ((ramdisk_load_gpa == INVALID_GPA) && (kernel_end < min(mods_start, ramdisk_gpa_max))) { ramdisk_load_gpa = find_space_from_ve820(vm, vm->sw.ramdisk_info.size, kernel_end, min(mods_start, ramdisk_gpa_max)); } } } else { /* For pre-launched VM, the ramdisk would be put by searching ve820 table. */ ramdisk_gpa_max = min(PRE_VM_MAX_RAM_ADDR_BELOW_4GB, ramdisk_gpa_max); if (kernel_end < ramdisk_gpa_max) { ramdisk_load_gpa = find_space_from_ve820(vm, vm->sw.ramdisk_info.size, kernel_end, ramdisk_gpa_max); } if (ramdisk_load_gpa == INVALID_GPA) { ramdisk_load_gpa = find_space_from_ve820(vm, vm->sw.ramdisk_info.size, MEM_1M, min(kernel_start, ramdisk_gpa_max)); } } if (ramdisk_load_gpa == INVALID_GPA) { pr_err("no space in guest memory to load VM %d ramdisk", vm->vm_id); vm->sw.ramdisk_info.size = 0U; } dev_dbg(DBG_LEVEL_VMLOAD, "VM%d ramdisk load_addr: 0x%lx", vm->vm_id, ramdisk_load_gpa); return (ramdisk_load_gpa == INVALID_GPA) ? NULL : (void *)ramdisk_load_gpa; } /** * @pre vm != NULL */ static void *get_bzimage_kernel_load_addr(struct acrn_vm *vm) { void *load_addr = NULL; struct vm_sw_info *sw_info = &vm->sw; struct zero_page *zeropage; /* According to the explaination for pref_address * in Documentation/x86/boot.txt, a relocating * bootloader should attempt to load kernel at pref_address * if possible. A non-relocatable kernel will unconditionally * move itself and to run at this address. */ zeropage = (struct zero_page *)sw_info->kernel_info.kernel_src_addr; stac(); if ((is_sos_vm(vm)) && (zeropage->hdr.relocatable_kernel != 0U)) { uint64_t mods_start, mods_end; uint64_t kernel_load_gpa = INVALID_GPA; uint32_t kernel_align = zeropage->hdr.kernel_alignment; uint32_t kernel_init_size = zeropage->hdr.init_size; /* Because the kernel load address need to be up aligned to kernel_align size * whereas find_space_from_ve820() can only return page aligned address, * we enlarge the needed size to (kernel_init_size + kernel_align). */ uint32_t kernel_size = kernel_init_size + kernel_align; get_boot_mods_range(&mods_start, &mods_end); mods_start = sos_vm_hpa2gpa(mods_start); mods_end = sos_vm_hpa2gpa(mods_end); /* TODO: support load kernel when modules are beyond 4GB space. */ if (mods_end < MEM_4G) { kernel_load_gpa = find_space_from_ve820(vm, kernel_size, MEM_1M, mods_start); if (kernel_load_gpa == INVALID_GPA) { kernel_load_gpa = find_space_from_ve820(vm, kernel_size, mods_end, MEM_4G); } } if (kernel_load_gpa != INVALID_GPA) { load_addr = (void *)roundup((uint64_t)kernel_load_gpa, kernel_align); } } else { load_addr = (void *)zeropage->hdr.pref_addr; if (is_sos_vm(vm)) { /* The non-relocatable SOS kernel might overlap with boot modules. */ pr_err("Non-relocatable kernel found, risk to boot!"); } } clac(); if (load_addr == NULL) { pr_err("Could not get kernel load addr of VM %d .", vm->vm_id); } dev_dbg(DBG_LEVEL_VMLOAD, "VM%d kernel load_addr: 0x%lx", vm->vm_id, load_addr); return load_addr; } /** * @pre vm != NULL && efi_mmap_desc != NULL */ static uint16_t create_sos_vm_efi_mmap_desc(struct acrn_vm *vm, struct efi_memory_desc *efi_mmap_desc) { uint16_t i, desc_idx = 0U; const struct efi_memory_desc *hv_efi_mmap_desc = get_efi_mmap_entry(); for (i = 0U; i < get_efi_mmap_entries_count(); i++) { /* Below efi mmap desc types in native should be kept as original for SOS VM */ if ((hv_efi_mmap_desc[i].type == EFI_RESERVED_MEMORYTYPE) || (hv_efi_mmap_desc[i].type == EFI_UNUSABLE_MEMORY) || (hv_efi_mmap_desc[i].type == EFI_ACPI_RECLAIM_MEMORY) || (hv_efi_mmap_desc[i].type == EFI_ACPI_MEMORY_NVS) || (hv_efi_mmap_desc[i].type == EFI_BOOT_SERVICES_CODE) || (hv_efi_mmap_desc[i].type == EFI_BOOT_SERVICES_DATA) || (hv_efi_mmap_desc[i].type == EFI_RUNTIME_SERVICES_CODE) || (hv_efi_mmap_desc[i].type == EFI_RUNTIME_SERVICES_DATA) || (hv_efi_mmap_desc[i].type == EFI_MEMORYMAPPED_IO) || (hv_efi_mmap_desc[i].type == EFI_MEMORYMAPPED_IOPORTSPACE) || (hv_efi_mmap_desc[i].type == EFI_PALCODE) || (hv_efi_mmap_desc[i].type == EFI_PERSISTENT_MEMORY)) { efi_mmap_desc[desc_idx] = hv_efi_mmap_desc[i]; desc_idx++; } } for (i = 0U; i < vm->e820_entry_num; i++) { /* The memory region with e820 type of RAM could be acted as EFI_CONVENTIONAL_MEMORY * for SOS VM, the region which occupied by HV and pre-launched VM has been filtered * already, so it is safe for SOS VM. * As SOS VM start to run after efi call ExitBootService(), the type of EFI_LOADER_CODE * and EFI_LOADER_DATA which have been mapped to E820_TYPE_RAM are not needed. */ if (vm->e820_entries[i].type == E820_TYPE_RAM) { efi_mmap_desc[desc_idx].type = EFI_CONVENTIONAL_MEMORY; efi_mmap_desc[desc_idx].phys_addr = vm->e820_entries[i].baseaddr; efi_mmap_desc[desc_idx].virt_addr = vm->e820_entries[i].baseaddr; efi_mmap_desc[desc_idx].num_pages = vm->e820_entries[i].length / PAGE_SIZE; efi_mmap_desc[desc_idx].attribute = EFI_MEMORY_WB; desc_idx++; } } for (i = 0U; i < desc_idx; i++) { pr_dbg("SOS VM efi mmap desc[%d]: addr: 0x%lx, len: 0x%lx, type: %d", i, efi_mmap_desc[i].phys_addr, efi_mmap_desc[i].num_pages * PAGE_SIZE, efi_mmap_desc[i].type); } return desc_idx; } /** * @pre zp != NULL && vm != NULL */ static uint32_t create_zeropage_e820(struct zero_page *zp, const struct acrn_vm *vm) { uint32_t entry_num = vm->e820_entry_num; struct e820_entry *zp_e820 = zp->entries; const struct e820_entry *vm_e820 = vm->e820_entries; if ((zp_e820 == NULL) || (vm_e820 == NULL) || (entry_num == 0U) || (entry_num > E820_MAX_ENTRIES)) { pr_err("e820 create error"); entry_num = 0U; } else { (void)memcpy_s((void *)zp_e820, entry_num * sizeof(struct e820_entry), (void *)vm_e820, entry_num * sizeof(struct e820_entry)); } return entry_num; } /** * @pre vm != NULL * @pre (vm->min_mem_addr <= kernel_load_addr) && (kernel_load_addr < vm->max_mem_addr) */ static uint64_t create_zero_page(struct acrn_vm *vm, uint64_t load_params_gpa) { struct zero_page *zeropage, *hva; struct sw_kernel_info *sw_kernel = &(vm->sw.kernel_info); struct sw_module_info *bootargs_info = &(vm->sw.bootargs_info); struct sw_module_info *ramdisk_info = &(vm->sw.ramdisk_info); uint64_t gpa, addr; gpa = BZIMG_ZEROPAGE_GPA(load_params_gpa); hva = (struct zero_page *)gpa2hva(vm, gpa); zeropage = hva; stac(); /* clear the zeropage */ (void)memset(zeropage, 0U, MEM_2K); #ifdef CONFIG_MULTIBOOT2 if (is_sos_vm(vm)) { struct acrn_boot_info *abi = get_acrn_boot_info(); if (boot_from_uefi(abi)) { struct efi_info *sos_efi_info = &zeropage->boot_efi_info; uint64_t efi_mmap_gpa = BZIMG_EFIMMAP_GPA(load_params_gpa); struct efi_memory_desc *efi_mmap_desc = (struct efi_memory_desc *)gpa2hva(vm, efi_mmap_gpa); uint16_t efi_mmap_desc_nr = create_sos_vm_efi_mmap_desc(vm, efi_mmap_desc); sos_efi_info->loader_signature = 0x34364c45; /* "EL64" */ sos_efi_info->memdesc_version = abi->uefi_info.memdesc_version; sos_efi_info->memdesc_size = sizeof(struct efi_memory_desc); sos_efi_info->memmap_size = efi_mmap_desc_nr * sizeof(struct efi_memory_desc); sos_efi_info->memmap = (uint32_t)efi_mmap_gpa; sos_efi_info->memmap_hi = (uint32_t)(efi_mmap_gpa >> 32U); sos_efi_info->systab = abi->uefi_info.systab; sos_efi_info->systab_hi = abi->uefi_info.systab_hi; } } #endif /* copy part of the header into the zero page */ hva = (struct zero_page *)sw_kernel->kernel_src_addr; (void)memcpy_s(&(zeropage->hdr), sizeof(zeropage->hdr), &(hva->hdr), sizeof(hva->hdr)); /* See if kernel has a RAM disk */ if (ramdisk_info->src_addr != NULL) { /* Copy ramdisk load_addr and size in zeropage header structure */ addr = (uint64_t)ramdisk_info->load_addr; zeropage->hdr.ramdisk_addr = (uint32_t)addr; zeropage->hdr.ramdisk_size = (uint32_t)ramdisk_info->size; } /* Copy bootargs load_addr in zeropage header structure */ addr = (uint64_t)bootargs_info->load_addr; zeropage->hdr.bootargs_addr = (uint32_t)addr; /* set constant arguments in zero page */ zeropage->hdr.loader_type = 0xffU; zeropage->hdr.load_flags |= (1U << 5U); /* quiet */ /* Create/add e820 table entries in zeropage */ zeropage->e820_nentries = (uint8_t)create_zeropage_e820(zeropage, vm); clac(); /* Return Physical Base Address of zeropage */ return gpa; } /** * @pre sw_module != NULL */ static void load_sw_module(struct acrn_vm *vm, struct sw_module_info *sw_module) { if ((sw_module->size != 0) && (sw_module->load_addr != NULL)) { (void)copy_to_gpa(vm, sw_module->src_addr, (uint64_t)sw_module->load_addr, sw_module->size); } } /** * @pre vm != NULL */ static void prepare_loading_bzimage(struct acrn_vm *vm, struct acrn_vcpu *vcpu, uint64_t load_params_gpa, uint64_t kernel_load_gpa) { uint32_t i; uint32_t prot_code_offset, prot_code_size, kernel_entry_offset; uint8_t setup_sectors; const struct acrn_vm_config *vm_config = get_vm_config(vm->vm_id); struct sw_kernel_info *sw_kernel = &(vm->sw.kernel_info); struct sw_module_info *bootargs_info = &(vm->sw.bootargs_info); struct sw_module_info *ramdisk_info = &(vm->sw.ramdisk_info); struct sw_module_info *acpi_info = &(vm->sw.acpi_info); struct zero_page *zeropage = (struct zero_page *)sw_kernel->kernel_src_addr; /* The bzImage file consists of three parts: * boot_params(i.e. zero page) + real mode setup code + compressed protected mode code * The compressed proteced mode code start at offset (setup_sectors + 1U) * 512U of bzImage. * Only protected mode code need to be loaded. */ stac(); setup_sectors = (zeropage->hdr.setup_sects == 0U) ? 4U : zeropage->hdr.setup_sects; clac(); prot_code_offset = (uint32_t)(setup_sectors + 1U) * 512U; prot_code_size = (sw_kernel->kernel_size > prot_code_offset) ? (sw_kernel->kernel_size - prot_code_offset) : 0U; /* Copy the protected mode part kernel code to its run-time location */ (void)copy_to_gpa(vm, (sw_kernel->kernel_src_addr + prot_code_offset), kernel_load_gpa, prot_code_size); if (vm->sw.ramdisk_info.size > 0U) { /* Use customer specified ramdisk load addr if it is configured in VM configuration, * otherwise use allocated address calculated by HV. */ if (vm_config->os_config.kernel_ramdisk_addr != 0UL) { vm->sw.ramdisk_info.load_addr = (void *)vm_config->os_config.kernel_ramdisk_addr; } else { vm->sw.ramdisk_info.load_addr = (void *)get_initrd_load_addr(vm, kernel_load_gpa); if (vm->sw.ramdisk_info.load_addr == NULL) { pr_err("failed to load initrd for VM%d !", vm->vm_id); } } /* Don't need to load ramdisk if src_addr and load_addr are pointed to same place. */ if (gpa2hva(vm, (uint64_t)ramdisk_info->load_addr) != ramdisk_info->src_addr) { load_sw_module(vm, ramdisk_info); } } bootargs_info->load_addr = (void *)BZIMG_CMDLINE_GPA(load_params_gpa); load_sw_module(vm, bootargs_info); /* Copy Guest OS ACPI to its load location */ load_sw_module(vm, acpi_info); /* 32bit kernel entry is at where protected mode code loaded */ kernel_entry_offset = 0U; if (vcpu->arch.cpu_mode == CPU_MODE_64BIT) { /* 64bit entry is the 512bytes after the start */ kernel_entry_offset += 512U; } sw_kernel->kernel_entry_addr = (void *)(kernel_load_gpa + kernel_entry_offset); /* Documentation states: ebx=0, edi=0, ebp=0, esi=ptr to * zeropage */ for (i = 0U; i < NUM_GPRS; i++) { vcpu_set_gpreg(vcpu, i, 0UL); } /* Create Zeropage and copy Physical Base Address of Zeropage * in RSI */ vcpu_set_gpreg(vcpu, CPU_REG_RSI, create_zero_page(vm, load_params_gpa)); pr_info("%s, RSI pointing to zero page for VM %d at GPA %X", __func__, vm->vm_id, vcpu_get_gpreg(vcpu, CPU_REG_RSI)); } /** * @pre vm != NULL */ static void prepare_loading_rawimage(struct acrn_vm *vm) { struct sw_kernel_info *sw_kernel = &(vm->sw.kernel_info); struct sw_module_info *acpi_info = &(vm->sw.acpi_info); const struct acrn_vm_config *vm_config = get_vm_config(vm->vm_id); uint64_t kernel_load_gpa; /* TODO: GPA 0 load support */ kernel_load_gpa = vm_config->os_config.kernel_load_addr; /* Copy the guest kernel image to its run-time location */ (void)copy_to_gpa(vm, sw_kernel->kernel_src_addr, kernel_load_gpa, sw_kernel->kernel_size); /* Copy Guest OS ACPI to its load location */ load_sw_module(vm, acpi_info); sw_kernel->kernel_entry_addr = (void *)vm_config->os_config.kernel_entry_addr; } static int32_t vm_bzimage_loader(struct acrn_vm *vm) { int32_t ret = -ENOMEM; /* get primary vcpu */ struct acrn_vcpu *vcpu = vcpu_from_vid(vm, BSP_CPU_ID); uint64_t load_params_gpa = find_space_from_ve820(vm, BZIMG_LOAD_PARAMS_SIZE, MEM_4K, MEM_1M); if (load_params_gpa != INVALID_GPA) { uint64_t kernel_load_gpa = (uint64_t)get_bzimage_kernel_load_addr(vm); if (kernel_load_gpa != 0UL) { /* We boot bzImage from protected mode directly */ init_vcpu_protect_mode_regs(vcpu, BZIMG_INITGDT_GPA(load_params_gpa)); prepare_loading_bzimage(vm, vcpu, load_params_gpa, kernel_load_gpa); ret = 0; } } return ret; } static int32_t vm_rawimage_loader(struct acrn_vm *vm) { int32_t ret = 0; uint64_t vgdt_gpa = 0x800; /* * TODO: * - We need to initialize the guest bsp registers according to * guest boot mode (real mode vs protect mode) * - The memory layout usage is unclear, only GDT might be needed as its boot param. * currently we only support Zephyr which has no needs on cmdline/e820/efimmap/etc. * hardcode the vGDT GPA to 0x800 where is not used by Zephyr so far; */ init_vcpu_protect_mode_regs(vcpu_from_vid(vm, BSP_CPU_ID), vgdt_gpa); prepare_loading_rawimage(vm); return ret; } /** * @pre vm != NULL */ int32_t vm_sw_loader(struct acrn_vm *vm) { int32_t ret = 0; /* get primary vcpu */ struct acrn_vcpu *vcpu = vcpu_from_vid(vm, BSP_CPU_ID); if (vm->sw.kernel_type == KERNEL_BZIMAGE) { ret = vm_bzimage_loader(vm); } else if (vm->sw.kernel_type == KERNEL_RAWIMAGE){ ret = vm_rawimage_loader(vm); } else { ret = -EINVAL; } if (ret == 0) { /* Set VCPU entry point to kernel entry */ vcpu_set_rip(vcpu, (uint64_t)vm->sw.kernel_info.kernel_entry_addr); pr_info("%s, VM %hu VCPU %hu Entry: 0x%016lx ", __func__, vm->vm_id, vcpu->vcpu_id, vm->sw.kernel_info.kernel_entry_addr); } return ret; }