/*- * Copyright (c) 2012 NetApp, Inc. * Copyright (c) 2013 Neel Natu * Copyright (c) 2018 Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #define vuart_lock_init(vu) spinlock_init(&((vu)->lock)) #define vuart_lock(vu) spinlock_obtain(&((vu)->lock)) #define vuart_unlock(vu) spinlock_release(&((vu)->lock)) static inline void fifo_reset(struct vuart_fifo *fifo) { fifo->rindex = 0U; fifo->windex = 0U; fifo->num = 0U; } static inline void fifo_putchar(struct vuart_fifo *fifo, char ch) { fifo->buf[fifo->windex] = ch; if (fifo->num < fifo->size) { fifo->windex = (fifo->windex + 1U) % fifo->size; fifo->num++; } else { fifo->rindex = (fifo->rindex + 1U) % fifo->size; fifo->windex = (fifo->windex + 1U) % fifo->size; } } static inline char fifo_getchar(struct vuart_fifo *fifo) { char c = -1; if (fifo->num > 0U) { c = fifo->buf[fifo->rindex]; fifo->rindex = (fifo->rindex + 1U) % fifo->size; fifo->num--; } return c; } static inline uint32_t fifo_numchars(const struct vuart_fifo *fifo) { return fifo->num; } void vuart_putchar(struct acrn_vuart *vu, char ch) { vuart_lock(vu); fifo_putchar(&vu->rxfifo, ch); vuart_unlock(vu); } char vuart_getchar(struct acrn_vuart *vu) { char c; vuart_lock(vu); c = fifo_getchar(&vu->txfifo); vuart_unlock(vu); return c; } static inline void vuart_fifo_init(struct acrn_vuart *vu) { vu->txfifo.buf = vu->vuart_tx_buf; vu->rxfifo.buf = vu->vuart_rx_buf; vu->txfifo.size = TX_BUF_SIZE; vu->rxfifo.size = RX_BUF_SIZE; fifo_reset(&(vu->txfifo)); fifo_reset(&(vu->rxfifo)); } /* * The IIR returns a prioritized interrupt reason: * - receive data available * - transmit holding register empty * * Return an interrupt reason if one is available. */ static uint8_t vuart_intr_reason(const struct acrn_vuart *vu) { uint8_t ret; if (((vu->lsr & LSR_OE) != 0U) && ((vu->ier & IER_ELSI) != 0U)) { ret = IIR_RLS; } else if ((fifo_numchars(&vu->rxfifo) > 0U) && ((vu->ier & IER_ERBFI) != 0U)) { ret = IIR_RXTOUT; } else if (vu->thre_int_pending && ((vu->ier & IER_ETBEI) != 0U)) { ret = IIR_TXRDY; } else if(((vu->msr & MSR_DELTA_MASK) != 0U) && ((vu->ier & IER_EMSC) != 0U)) { ret = IIR_MLSC; } else { ret = IIR_NOPEND; } return ret; } struct acrn_vuart *find_vuart_by_port(struct acrn_vm *vm, uint16_t offset) { uint8_t i; struct acrn_vuart *vu, *ret_vu = NULL; /* TODO: support pci vuart find */ for (i = 0U; i < MAX_VUART_NUM_PER_VM; i++) { vu = &vm->vuart[i]; if ((vu->active) && (vu->port_base == (offset & ~0x7U))) { ret_vu = vu; break; } } return ret_vu; } /* * Toggle the COM port's intr pin depending on whether or not we have an * interrupt condition to report to the processor. */ void vuart_toggle_intr(const struct acrn_vuart *vu) { uint8_t intr_reason; union ioapic_rte rte; uint32_t operation; intr_reason = vuart_intr_reason(vu); vioapic_get_rte(vu->vm, vu->irq, &rte); /* TODO: * Here should assert vuart irq according to CONFIG_COM_IRQ polarity. * The best way is to get the polarity info from ACIP table. * Here we just get the info from vioapic configuration. * based on this, we can still have irq storm during guest * modify the vioapic setting, as it's only for debug uart, * we want to make it as an known issue. */ if (rte.bits.intr_polarity == IOAPIC_RTE_INTPOL_ALO) { operation = (intr_reason != IIR_NOPEND) ? GSI_SET_LOW : GSI_SET_HIGH; } else { operation = (intr_reason != IIR_NOPEND) ? GSI_SET_HIGH : GSI_SET_LOW; } vpic_set_irqline(vm_pic(vu->vm), vu->irq, operation); vioapic_set_irqline_lock(vu->vm, vu->irq, operation); } static void send_to_target(struct acrn_vuart *vu, uint8_t value_u8) { vuart_lock(vu); if (vu->active) { fifo_putchar(&vu->rxfifo, (char)value_u8); vu->thre_int_pending = true; vuart_toggle_intr(vu); } vuart_unlock(vu); } static uint8_t get_modem_status(uint8_t mcr) { uint8_t msr; if ((mcr & MCR_LOOPBACK) != 0U) { /* * In the loopback mode certain bits from the MCR are * reflected back into MSR. */ msr = 0U; if ((mcr & MCR_RTS) != 0U) { msr |= MSR_CTS; } if ((mcr & MCR_DTR) != 0U) { msr |= MSR_DSR; } if ((mcr & MCR_OUT1) != 0U) { msr |= MSR_RI; } if ((mcr & MCR_OUT2) != 0U) { msr |= MSR_DCD; } } else { /* * Always assert DCD and DSR so tty open doesn't block * even if CLOCAL is turned off. */ msr = MSR_DCD | MSR_DSR; } return msr; } static uint8_t update_modem_status(uint8_t new_msr, uint8_t old_msr) { uint8_t update_msr = old_msr; /* * Detect if there has been any change between the * previous and the new value of MSR. If there is * then assert the appropriate MSR delta bit. */ if (((new_msr & MSR_CTS) ^ (old_msr & MSR_CTS)) != 0U) { update_msr |= MSR_DCTS; } if (((new_msr & MSR_DSR) ^ (old_msr & MSR_DSR)) != 0U) { update_msr |= MSR_DDSR; } if (((new_msr & MSR_DCD) ^ (old_msr & MSR_DCD)) != 0U) { update_msr |= MSR_DDCD; } if (((new_msr & MSR_RI) == 0U) && ((old_msr & MSR_RI) != 0U)) { update_msr |= MSR_TERI; } update_msr &= MSR_DELTA_MASK; update_msr |= new_msr; return update_msr; } /* * @pre: vu != NULL */ static void write_reg(struct acrn_vuart *vu, uint16_t reg, uint8_t value_u8) { uint8_t msr; vuart_lock(vu); /* * Take care of the special case DLAB accesses first */ if (((vu->lcr & LCR_DLAB) != 0U) && (reg == UART16550_DLL)) { vu->dll = value_u8; } else if (((vu->lcr & LCR_DLAB) != 0U) && (reg == UART16550_DLM)) { vu->dlh = value_u8; } else { switch (reg) { case UART16550_THR: if ((vu->mcr & MCR_LOOPBACK) != 0U) { fifo_putchar(&vu->rxfifo, (char)value_u8); vu->lsr |= LSR_OE; } else { fifo_putchar(&vu->txfifo, (char)value_u8); } vu->thre_int_pending = true; break; case UART16550_IER: if (((vu->ier & IER_ETBEI) == 0U) && ((value_u8 & IER_ETBEI) != 0U)) { vu->thre_int_pending = true; } /* * Apply mask so that bits 4-7 are 0 * Also enables bits 0-3 only if they're 1 */ vu->ier = value_u8 & 0x0FU; break; case UART16550_FCR: /* * The FCR_ENABLE bit must be '1' for the programming * of other FCR bits to be effective. */ if ((value_u8 & FCR_FIFOE) == 0U) { vu->fcr = 0U; } else { if ((value_u8 & FCR_RFR) != 0U) { fifo_reset(&vu->rxfifo); } vu->fcr = value_u8 & (FCR_FIFOE | FCR_DMA | FCR_RX_MASK); } break; case UART16550_LCR: vu->lcr = value_u8; break; case UART16550_MCR: /* Apply mask so that bits 5-7 are 0 */ vu->mcr = value_u8 & 0x1FU; msr = get_modem_status(vu->mcr); /* * Update the value of MSR while retaining the delta * bits. */ vu->msr = update_modem_status(msr, vu->msr); break; case UART16550_LSR: /* * Line status register is not meant to be written to * during normal operation. */ break; case UART16550_MSR: /* * As far as I can tell MSR is a read-only register. */ break; case UART16550_SCR: vu->scr = value_u8; break; default: /* * For the reg that is not handled (either a read-only * register or an invalid register), ignore the write to it. * Gracefully return if prior case clauses have not been met. */ break; } } vuart_toggle_intr(vu); vuart_unlock(vu); } static bool vuart_write(struct acrn_vm *vm, uint16_t offset_arg, __unused size_t width, uint32_t value) { uint16_t offset = offset_arg; struct acrn_vuart *vu = find_vuart_by_port(vm, offset); uint8_t value_u8 = (uint8_t)value; struct acrn_vuart *target_vu = NULL; if (vu != NULL) { offset -= vu->port_base; target_vu = vu->target_vu; if (((vu->mcr & MCR_LOOPBACK) == 0U) && (offset == UART16550_THR) && (target_vu != NULL)) { send_to_target(target_vu, value_u8); } else { write_reg(vu, offset, value_u8); } } return true; } static bool vuart_read(struct acrn_vm *vm, struct acrn_vcpu *vcpu, uint16_t offset_arg, __unused size_t width) { uint16_t offset = offset_arg; uint8_t iir, reg, intr_reason; struct acrn_vuart *vu = find_vuart_by_port(vm, offset); struct pio_request *pio_req = &vcpu->req.reqs.pio; if (vu != NULL) { offset -= vu->port_base; vuart_lock(vu); /* * Take care of the special case DLAB accesses first */ if ((vu->lcr & LCR_DLAB) != 0U) { if (offset == UART16550_DLL) { reg = vu->dll; } else if (offset == UART16550_DLM) { reg = vu->dlh; } else { reg = 0U; } } else { switch (offset) { case UART16550_RBR: vu->lsr &= ~LSR_OE; reg = (uint8_t)fifo_getchar(&vu->rxfifo); break; case UART16550_IER: reg = vu->ier; break; case UART16550_IIR: iir = ((vu->fcr & FCR_FIFOE) != 0U) ? IIR_FIFO_MASK : 0U; intr_reason = vuart_intr_reason(vu); /* * Deal with side effects of reading the IIR register */ if (intr_reason == IIR_TXRDY) { vu->thre_int_pending = false; } iir |= intr_reason; reg = iir; break; case UART16550_LCR: reg = vu->lcr; break; case UART16550_MCR: reg = vu->mcr; break; case UART16550_LSR: /* Transmitter is always ready for more data */ vu->lsr |= LSR_TEMT | LSR_THRE; /* Check for new receive data */ if (fifo_numchars(&vu->rxfifo) > 0U) { vu->lsr |= LSR_DR; } else { vu->lsr &= ~LSR_DR; } reg = vu->lsr; /* The LSR_OE bit is cleared on LSR read */ vu->lsr &= ~LSR_OE; break; case UART16550_MSR: /* * MSR delta bits are cleared on read */ reg = vu->msr; vu->msr &= ~MSR_DELTA_MASK; break; case UART16550_SCR: reg = vu->scr; break; default: reg = 0xFFU; break; } } vuart_toggle_intr(vu); pio_req->value = (uint32_t)reg; vuart_unlock(vu); } return true; } /* * @pre: vuart_idx = 0 or 1 */ static bool vuart_register_io_handler(struct acrn_vm *vm, uint16_t port_base, uint32_t vuart_idx) { uint32_t pio_idx; bool ret = true; struct vm_io_range range = { .flags = IO_ATTR_RW, .base = port_base, .len = 8U }; switch (vuart_idx) { case 0U: pio_idx = UART_PIO_IDX0; break; case 1U: pio_idx = UART_PIO_IDX1; break; default: printf("Not support vuart index %d, will not register \n"); ret = false; } if (ret != 0U) { register_pio_emulation_handler(vm, pio_idx, &range, vuart_read, vuart_write); } return ret; } static void vuart_setup(struct acrn_vm *vm, struct vuart_config *vu_config, uint16_t vuart_idx) { uint32_t divisor; struct acrn_vuart *vu = &vm->vuart[vuart_idx]; /* Set baud rate*/ divisor = (UART_CLOCK_RATE / BAUD_115200) >> 4U; vu->dll = (uint8_t)divisor; vu->dlh = (uint8_t)(divisor >> 8U); vu->vm = vm; vuart_fifo_init(vu); vuart_lock_init(vu); vu->thre_int_pending = true; vu->ier = 0U; vuart_toggle_intr(vu); vu->target_vu = NULL; if (vu_config->type == VUART_LEGACY_PIO) { vu->port_base = vu_config->addr.port_base; vu->irq = vu_config->irq; if (vuart_register_io_handler(vm, vu->port_base, vuart_idx) != 0U) { vu->active = true; } } else { /*TODO: add pci vuart support here*/ printf("PCI vuart is not support\n"); } } static struct acrn_vuart *find_active_target_vuart(struct vuart_config *vu_config) { struct acrn_vm *target_vm = NULL; struct acrn_vuart *target_vu = NULL, *ret_vu = NULL; uint16_t target_vmid, target_vuid; target_vmid = vu_config->t_vuart.vm_id; target_vuid = vu_config->t_vuart.vuart_id; if (target_vmid < CONFIG_MAX_VM_NUM) { target_vm = get_vm_from_vmid(target_vmid); } if (target_vuid < MAX_VUART_NUM_PER_VM) { target_vu = &target_vm->vuart[target_vuid]; } if ((target_vu != NULL) && (target_vu->active)) { ret_vu = target_vu; } return ret_vu; } static void vuart_setup_connection(struct acrn_vm *vm, struct vuart_config *vu_config, uint16_t vuart_idx) { struct acrn_vuart *vu, *t_vu; vu = &vm->vuart[vuart_idx]; if (vu->active) { t_vu = find_active_target_vuart(vu_config); if ((t_vu != NULL) && (t_vu->target_vu == NULL)) { vu->target_vu = t_vu; t_vu->target_vu = vu; } } } void vuart_deinit_connect(struct acrn_vuart *vu) { struct acrn_vuart *t_vu = vu->target_vu; t_vu->target_vu = NULL; vu->target_vu = NULL; } bool is_vuart_intx(struct acrn_vm *vm, uint32_t intx_pin) { uint8_t i; bool ret = false; for (i = 0U; i < MAX_VUART_NUM_PER_VM; i++) { if ((vm->vuart[i].active) && (vm->vuart[i].irq == intx_pin)) { ret = true; } } return ret; } void vuart_init(struct acrn_vm *vm, struct vuart_config *vu_config) { uint8_t i; for (i = 0U; i < MAX_VUART_NUM_PER_VM; i++) { vm->vuart[i].active = false; /* This vuart is not exist */ if ((vu_config[i].type == VUART_LEGACY_PIO) && (vu_config[i].addr.port_base == INVALID_COM_BASE)) { continue; } vuart_setup(vm, &vu_config[i], i); /* * The first vuart is used for VM console. * The rest of vuarts are used for connection. */ if (i != 0U) { vuart_setup_connection(vm, &vu_config[i], i); } } } void vuart_deinit(struct acrn_vm *vm) { uint8_t i; for (i = 0U; i < MAX_VUART_NUM_PER_VM; i++) { vm->vuart[i].active = false; if (vm->vuart[i].target_vu != NULL) { vuart_deinit_connect(&vm->vuart[i]); } } }