/* * SHARED BUFFER * * Copyright (C) 2017 Intel Corporation. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause * * Li Fei * */ #include static inline bool sbuf_is_empty(struct shared_buf *sbuf) { return (sbuf->head == sbuf->tail); } static inline uint32_t sbuf_next_ptr(uint32_t pos, uint32_t span, uint32_t scope) { pos += span; pos = (pos >= scope) ? (pos - scope) : pos; return pos; } static inline uint32_t sbuf_calculate_allocate_size(uint32_t ele_num, uint32_t ele_size) { uint64_t sbuf_allocate_size; sbuf_allocate_size = ele_num * ele_size; sbuf_allocate_size += SBUF_HEAD_SIZE; if (sbuf_allocate_size > SBUF_MAX_SIZE) { pr_err("%s, num=0x%x, size=0x%x exceed 0x%x", __func__, ele_num, ele_size, SBUF_MAX_SIZE); return 0; } return (uint32_t) sbuf_allocate_size; } struct shared_buf *sbuf_allocate(uint32_t ele_num, uint32_t ele_size) { struct shared_buf *sbuf; uint32_t sbuf_allocate_size; if (ele_num == 0U || ele_size == 0U) { pr_err("%s invalid parameter!", __func__); return NULL; } sbuf_allocate_size = sbuf_calculate_allocate_size(ele_num, ele_size); if (sbuf_allocate_size == 0U) return NULL; sbuf = calloc(1, sbuf_allocate_size); if (sbuf == NULL) { pr_err("%s no memory!", __func__); return NULL; } sbuf->ele_num = ele_num; sbuf->ele_size = ele_size; sbuf->size = ele_num * ele_size; sbuf->magic = SBUF_MAGIC; pr_info("%s ele_num=0x%x, ele_size=0x%x allocated", __func__, ele_num, ele_size); return sbuf; } void sbuf_free(struct shared_buf *sbuf) { if ((sbuf == NULL) || sbuf->magic != SBUF_MAGIC) { pr_err("%s invalid parameter!", __func__); return; } sbuf->magic = 0UL; free(sbuf); } int sbuf_get(struct shared_buf *sbuf, uint8_t *data) { const void *from; if ((sbuf == NULL) || (data == NULL)) return -EINVAL; if (sbuf_is_empty(sbuf)) { /* no data available */ return 0; } from = (void *)sbuf + SBUF_HEAD_SIZE + sbuf->head; (void)memcpy_s((void *)data, sbuf->ele_size, from, sbuf->ele_size); sbuf->head = sbuf_next_ptr(sbuf->head, sbuf->ele_size, sbuf->size); return sbuf->ele_size; } /** * The high caller should guarantee each time there must have * sbuf->ele_size data can be write form data and this function * should guarantee execution atomically. * * flag: * If OVERWRITE_EN set, buf can store (ele_num - 1) elements at most. * Should use lock to guarantee that only one read or write at * the same time. * if OVERWRITE_EN not set, buf can store (ele_num - 1) elements * at most. Shouldn't modify the sbuf->head. * * return: * ele_size: write succeeded. * 0: no write, buf is full * negative: failed. */ int sbuf_put(struct shared_buf *sbuf, uint8_t *data) { void *to; uint32_t next_tail; bool trigger_overwrite = false; if ((sbuf == NULL) || (data == NULL)) return -EINVAL; next_tail = sbuf_next_ptr(sbuf->tail, sbuf->ele_size, sbuf->size); /* if this write would trigger overrun */ if (next_tail == sbuf->head) { /* accumulate overrun count if necessary */ sbuf->overrun_cnt += sbuf->flags & OVERRUN_CNT_EN; if ((sbuf->flags & OVERWRITE_EN) == 0U) { /* if not enable over write, return here. */ return 0; } trigger_overwrite = true; } to = (void *)sbuf + SBUF_HEAD_SIZE + sbuf->tail; (void)memcpy_s(to, sbuf->ele_size, data, sbuf->ele_size); if (trigger_overwrite) { sbuf->head = sbuf_next_ptr(sbuf->head, sbuf->ele_size, sbuf->size); } sbuf->tail = next_tail; return sbuf->ele_size; } int sbuf_share_setup(uint16_t pcpu_id, uint32_t sbuf_id, uint64_t *hva) { if (pcpu_id >= phys_cpu_num || sbuf_id >= ACRN_SBUF_ID_MAX) return -EINVAL; per_cpu(sbuf, pcpu_id)[sbuf_id] = hva; pr_info("%s share sbuf for pCPU[%u] with sbuf_id[%u] setup successfully", __func__, pcpu_id, sbuf_id); return 0; }