/* * Copyright (C) 2018 Intel Corporation. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #define ACRN_DBG_GUEST 6 /* for VM0 e820 */ uint32_t e820_entries; struct e820_entry e820[E820_MAX_ENTRIES]; struct e820_mem_params e820_mem; struct page_walk_info { uint64_t top_entry; /* Top level paging structure entry */ int level; uint32_t width; bool is_user_mode; bool is_write_access; bool is_inst_fetch; bool pse; /* CR4.PSE for 32bit paing, * true for PAE/4-level paing */ bool wp; /* CR0.WP */ bool nxe; /* MSR_IA32_EFER_NXE_BIT */ }; inline bool is_vm0(struct vm *vm) { return (vm->attr.boot_idx & 0x7FU) == 0; } inline struct vcpu *vcpu_from_vid(struct vm *vm, int vcpu_id) { int i; struct vcpu *vcpu; foreach_vcpu(i, vm, vcpu) { if (vcpu->vcpu_id == vcpu_id) return vcpu; } return NULL; } inline struct vcpu *vcpu_from_pid(struct vm *vm, uint16_t pcpu_id) { int i; struct vcpu *vcpu; foreach_vcpu(i, vm, vcpu) { if (vcpu->pcpu_id == pcpu_id) return vcpu; } return NULL; } inline struct vcpu *get_primary_vcpu(struct vm *vm) { int i; struct vcpu *vcpu; foreach_vcpu(i, vm, vcpu) { if (is_vcpu_bsp(vcpu)) return vcpu; } return NULL; } inline uint64_t vcpumask2pcpumask(struct vm *vm, uint64_t vdmask) { int vcpu_id; uint64_t dmask = 0; struct vcpu *vcpu; while ((vcpu_id = ffs64(vdmask)) >= 0) { bitmap_clear(vcpu_id, &vdmask); vcpu = vcpu_from_vid(vm, vcpu_id); ASSERT(vcpu != NULL, "vcpu_from_vid failed"); bitmap_set(vcpu->pcpu_id, &dmask); } return dmask; } inline bool vm_lapic_disabled(struct vm *vm) { int i; struct vcpu *vcpu; foreach_vcpu(i, vm, vcpu) { if (vlapic_enabled(vcpu->arch_vcpu.vlapic)) return false; } return true; } enum vm_paging_mode get_vcpu_paging_mode(struct vcpu *vcpu) { struct run_context *cur_context = &vcpu->arch_vcpu.contexts[vcpu->arch_vcpu.cur_context]; enum vm_cpu_mode cpu_mode; cpu_mode = get_vcpu_mode(vcpu); if (cpu_mode == CPU_MODE_REAL) return PAGING_MODE_0_LEVEL; else if (cpu_mode == CPU_MODE_PROTECTED) { if ((cur_context->cr4 & CR4_PAE) != 0U) return PAGING_MODE_3_LEVEL; else if ((cur_context->cr0 & CR0_PG) != 0U) return PAGING_MODE_2_LEVEL; return PAGING_MODE_0_LEVEL; } else /* compatibility or 64bit mode */ return PAGING_MODE_4_LEVEL; } /* TODO: Add code to check for Revserved bits, SMAP and PKE when do translation * during page walk */ static int _gva2gpa_common(struct vcpu *vcpu, struct page_walk_info *pw_info, uint64_t gva, uint64_t *gpa, uint32_t *err_code) { int i, index; uint32_t shift; uint8_t *base; uint64_t entry; uint64_t addr, page_size; int ret = 0; int fault = 0; if (pw_info->level < 1) return -EINVAL; addr = pw_info->top_entry; for (i = pw_info->level - 1; i >= 0; i--) { addr = addr & IA32E_REF_MASK; base = GPA2HVA(vcpu->vm, addr); if (base == NULL) { ret = -EFAULT; goto out; } shift = i * pw_info->width + 12; index = (gva >> shift) & ((1UL << pw_info->width) - 1); page_size = 1UL << shift; if (pw_info->width == 10) /* 32bit entry */ entry = *((uint32_t *)(base + 4 * index)); else entry = *((uint64_t *)(base + 8 * index)); /* check if the entry present */ if ((entry & MMU_32BIT_PDE_P) == 0U) { ret = -EFAULT; goto out; } /* check for R/W */ if (pw_info->is_write_access && ((entry & MMU_32BIT_PDE_RW) == 0U)) { /* Case1: Supermode and wp is 1 * Case2: Usermode */ if (!(!pw_info->is_user_mode && !pw_info->wp)) fault = 1; } /* check for nx, since for 32-bit paing, the XD bit is * reserved(0), use the same logic as PAE/4-level paging */ if (pw_info->is_inst_fetch && pw_info->nxe && ((entry & MMU_MEM_ATTR_BIT_EXECUTE_DISABLE) != 0U)) fault = 1; /* check for U/S */ if (((entry & MMU_32BIT_PDE_US) == 0U) && pw_info->is_user_mode) fault = 1; if (pw_info->pse && (i > 0 && ((entry & MMU_32BIT_PDE_PS) != 0U))) break; addr = entry; } entry >>= shift; /* shift left 12bit more and back to clear XD/Prot Key/Ignored bits */ entry <<= (shift + 12); entry >>= 12; *gpa = entry | (gva & (page_size - 1)); out: if (fault != 0) { ret = -EFAULT; *err_code |= PAGE_FAULT_P_FLAG; } return ret; } static int _gva2gpa_pae(struct vcpu *vcpu, struct page_walk_info *pw_info, uint64_t gva, uint64_t *gpa, uint32_t *err_code) { int index; uint64_t *base; uint64_t entry; uint64_t addr; int ret; addr = pw_info->top_entry & 0xFFFFFFF0U; base = GPA2HVA(vcpu->vm, addr); if (base == NULL) { ret = -EFAULT; goto out; } index = (gva >> 30) & 0x3UL; entry = base[index]; if ((entry & MMU_32BIT_PDE_P) == 0U) { ret = -EFAULT; goto out; } pw_info->level = 2; pw_info->top_entry = entry; ret = _gva2gpa_common(vcpu, pw_info, gva, gpa, err_code); out: return ret; } /* Refer to SDM Vol.3A 6-39 section 6.15 for the format of paging fault error * code. * * Caller should set the contect of err_code properly according to the address * usage when calling this function: * - If it is an address for write, set PAGE_FAULT_WR_FLAG in err_code. * - If it is an address for instruction featch, set PAGE_FAULT_ID_FLAG in * err_code. * Caller should check the return value to confirm if the function success or * not. * If a protection volation detected during page walk, this function still will * give the gpa translated, it is up to caller to decide if it need to inject a * #PF or not. * - Return 0 for success. * - Return -EINVAL for invalid parameter. * - Return -EFAULT for paging fault, and refer to err_code for paging fault * error code. */ int gva2gpa(struct vcpu *vcpu, uint64_t gva, uint64_t *gpa, uint32_t *err_code) { struct run_context *cur_context = &vcpu->arch_vcpu.contexts[vcpu->arch_vcpu.cur_context]; enum vm_paging_mode pm = get_vcpu_paging_mode(vcpu); struct page_walk_info pw_info; int ret = 0; if ((gpa == NULL) || (err_code == NULL)) return -EINVAL; *gpa = 0; pw_info.top_entry = cur_context->cr3; pw_info.level = pm; pw_info.is_write_access = !!(*err_code & PAGE_FAULT_WR_FLAG); pw_info.is_inst_fetch = !!(*err_code & PAGE_FAULT_ID_FLAG); pw_info.is_user_mode = ((exec_vmread(VMX_GUEST_CS_SEL) & 0x3UL) == 3UL); pw_info.pse = true; pw_info.nxe = cur_context->ia32_efer & MSR_IA32_EFER_NXE_BIT; pw_info.wp = !!(cur_context->cr0 & CR0_WP); *err_code &= ~PAGE_FAULT_P_FLAG; if (pm == PAGING_MODE_4_LEVEL) { pw_info.width = 9; ret = _gva2gpa_common(vcpu, &pw_info, gva, gpa, err_code); } else if(pm == PAGING_MODE_3_LEVEL) { pw_info.width = 9; ret = _gva2gpa_pae(vcpu, &pw_info, gva, gpa, err_code); } else if (pm == PAGING_MODE_2_LEVEL) { pw_info.width = 10; pw_info.pse = !!(cur_context->cr4 & CR4_PSE); pw_info.nxe = false; ret = _gva2gpa_common(vcpu, &pw_info, gva, gpa, err_code); } else *gpa = gva; if (ret == -EFAULT) { if (pw_info.is_user_mode) *err_code |= PAGE_FAULT_US_FLAG; } return ret; } static inline int32_t _copy_gpa(struct vm *vm, void *h_ptr, uint64_t gpa, uint32_t size, uint32_t fix_pg_size, bool cp_from_vm) { uint64_t hpa; uint32_t off_in_pg, len, pg_size; void *g_ptr; hpa = _gpa2hpa(vm, gpa, &pg_size); if (pg_size == 0) { pr_err("GPA2HPA not found"); return -EINVAL; } if (fix_pg_size != 0) pg_size = fix_pg_size; off_in_pg = gpa & (pg_size - 1); len = (size > pg_size - off_in_pg) ? (pg_size - off_in_pg) : size; g_ptr = HPA2HVA(hpa); if (cp_from_vm) memcpy_s(h_ptr, len, g_ptr, len); else memcpy_s(g_ptr, len, h_ptr, len); return len; } static inline int copy_gpa(struct vm *vm, void *h_ptr, uint64_t gpa, uint32_t size, bool cp_from_vm) { int32_t len; if (vm == NULL) { pr_err("guest phy addr copy need vm param"); return -EINVAL; } do { len = _copy_gpa(vm, h_ptr, gpa, size, 0, cp_from_vm); if (len < 0) return len; gpa += len; h_ptr += len; size -= len; } while (size > 0); return 0; } static inline int copy_gva(struct vcpu *vcpu, void *h_ptr, uint64_t gva, uint32_t size, uint32_t *err_code, bool cp_from_vm) { uint64_t gpa = 0; int32_t len, ret; if (vcpu == NULL) { pr_err("guest virt addr copy need vcpu param"); return -EINVAL; } if (err_code == NULL) { pr_err("guest virt addr copy need err_code param"); return -EINVAL; } do { ret = gva2gpa(vcpu, gva, &gpa, err_code); if (ret < 0) { pr_err("error[%d] in GVA2GPA, err_code=0x%x", ret, *err_code); return ret; } len = ret = _copy_gpa(vcpu->vm, h_ptr, gpa, size, PAGE_SIZE_4K, cp_from_vm); if (ret < 0) return ret; gva += len; h_ptr += len; size -= len; } while (size > 0); return 0; } /* Caller(Guest) should make sure gpa is continuous. * - gpa from hypercall input which from kernel stack is gpa continuous, not * support kernel stack from vmap * - some other gpa from hypercall parameters, VHM should make sure it's * continuous */ int copy_from_gpa(struct vm *vm, void *h_ptr, uint64_t gpa, uint32_t size) { return copy_gpa(vm, h_ptr, gpa, size, 1); } int copy_to_gpa(struct vm *vm, void *h_ptr, uint64_t gpa, uint32_t size) { return copy_gpa(vm, h_ptr, gpa, size, 0); } int copy_from_gva(struct vcpu *vcpu, void *h_ptr, uint64_t gva, uint32_t size, uint32_t *err_code) { return copy_gva(vcpu, h_ptr, gva, size, err_code, 1); } int copy_to_gva(struct vcpu *vcpu, void *h_ptr, uint64_t gva, uint32_t size, uint32_t *err_code) { return copy_gva(vcpu, h_ptr, gva, size, err_code, 0); } void init_e820(void) { unsigned int i; if (boot_regs[0] == MULTIBOOT_INFO_MAGIC) { struct multiboot_info *mbi = (struct multiboot_info *) (HPA2HVA((uint64_t)boot_regs[1])); pr_info("Multiboot info detected\n"); if ((mbi->mi_flags & 0x40U) != 0U) { struct multiboot_mmap *mmap = (struct multiboot_mmap *) HPA2HVA((uint64_t)mbi->mi_mmap_addr); e820_entries = mbi->mi_mmap_length/ sizeof(struct multiboot_mmap); if (e820_entries > E820_MAX_ENTRIES) { pr_err("Too many E820 entries %d\n", e820_entries); e820_entries = E820_MAX_ENTRIES; } dev_dbg(ACRN_DBG_GUEST, "mmap length 0x%x addr 0x%x entries %d\n", mbi->mi_mmap_length, mbi->mi_mmap_addr, e820_entries); for (i = 0; i < e820_entries; i++) { e820[i].baseaddr = mmap[i].baseaddr; e820[i].length = mmap[i].length; e820[i].type = mmap[i].type; dev_dbg(ACRN_DBG_GUEST, "mmap table: %d type: 0x%x\n", i, mmap[i].type); dev_dbg(ACRN_DBG_GUEST, "Base: 0x%016llx length: 0x%016llx", mmap[i].baseaddr, mmap[i].length); } } } else ASSERT(false, "no multiboot info found"); } void obtain_e820_mem_info(void) { unsigned int i; struct e820_entry *entry; e820_mem.mem_bottom = UINT64_MAX; e820_mem.mem_top = 0x00; e820_mem.total_mem_size = 0; e820_mem.max_ram_blk_base = 0; e820_mem.max_ram_blk_size = 0; for (i = 0; i < e820_entries; i++) { entry = &e820[i]; if (e820_mem.mem_bottom > entry->baseaddr) e820_mem.mem_bottom = entry->baseaddr; if (entry->baseaddr + entry->length > e820_mem.mem_top) { e820_mem.mem_top = entry->baseaddr + entry->length; } if (entry->type == E820_TYPE_RAM) { e820_mem.total_mem_size += entry->length; if (entry->baseaddr == UOS_DEFAULT_START_ADDR) { e820_mem.max_ram_blk_base = entry->baseaddr; e820_mem.max_ram_blk_size = entry->length; } } } } static void rebuild_vm0_e820(void) { unsigned int i; uint64_t entry_start; uint64_t entry_end; uint64_t hv_start = CONFIG_RAM_START; uint64_t hv_end = hv_start + CONFIG_RAM_SIZE; struct e820_entry *entry, new_entry = {0}; /* hypervisor mem need be filter out from e820 table * it's hv itself + other hv reserved mem like vgt etc */ for (i = 0; i < e820_entries; i++) { entry = &e820[i]; entry_start = entry->baseaddr; entry_end = entry->baseaddr + entry->length; /* No need handle in these cases*/ if (entry->type != E820_TYPE_RAM || entry_end <= hv_start || entry_start >= hv_end) { continue; } /* filter out hv mem and adjust length of this entry*/ if (entry_start < hv_start && entry_end <= hv_end) { entry->length = hv_start - entry_start; continue; } /* filter out hv mem and need to create a new entry*/ if (entry_start < hv_start && entry_end > hv_end) { entry->length = hv_start - entry_start; new_entry.baseaddr = hv_end; new_entry.length = entry_end - hv_end; new_entry.type = E820_TYPE_RAM; continue; } /* This entry is within the range of hv mem * change to E820_TYPE_RESERVED */ if (entry_start >= hv_start && entry_end <= hv_end) { entry->type = E820_TYPE_RESERVED; continue; } if (entry_start >= hv_start && entry_start < hv_end && entry_end > hv_end) { entry->baseaddr = hv_end; entry->length = entry_end - hv_end; continue; } } if (new_entry.length > 0) { e820_entries++; ASSERT(e820_entries <= E820_MAX_ENTRIES, "e820 entry overflow"); entry = &e820[e820_entries - 1]; entry->baseaddr = new_entry.baseaddr; entry->length = new_entry.length; entry->type = new_entry.type; } e820_mem.total_mem_size -= CONFIG_RAM_SIZE; } int prepare_vm0_memmap_and_e820(struct vm *vm) { unsigned int i; uint32_t attr_wb = (IA32E_EPT_R_BIT | IA32E_EPT_W_BIT | IA32E_EPT_X_BIT | IA32E_EPT_WB); uint32_t attr_uc = (IA32E_EPT_R_BIT | IA32E_EPT_W_BIT | IA32E_EPT_X_BIT | IA32E_EPT_UNCACHED); struct e820_entry *entry; ASSERT(is_vm0(vm), "This func only for vm0"); rebuild_vm0_e820(); dev_dbg(ACRN_DBG_GUEST, "vm0: bottom memory - 0x%llx, top memory - 0x%llx\n", e820_mem.mem_bottom, e820_mem.mem_top); /* create real ept map for all ranges with UC */ ept_mmap(vm, e820_mem.mem_bottom, e820_mem.mem_bottom, (e820_mem.mem_top - e820_mem.mem_bottom), MAP_MMIO, attr_uc); /* update ram entries to WB attr */ for (i = 0; i < e820_entries; i++) { entry = &e820[i]; if (entry->type == E820_TYPE_RAM) ept_mmap(vm, entry->baseaddr, entry->baseaddr, entry->length, MAP_MEM, attr_wb); } dev_dbg(ACRN_DBG_GUEST, "VM0 e820 layout:\n"); for (i = 0; i < e820_entries; i++) { entry = &e820[i]; dev_dbg(ACRN_DBG_GUEST, "e820 table: %d type: 0x%x", i, entry->type); dev_dbg(ACRN_DBG_GUEST, "BaseAddress: 0x%016llx length: 0x%016llx\n", entry->baseaddr, entry->length); } /* unmap hypervisor itself for safety * will cause EPT violation if sos accesses hv memory */ ept_mmap(vm, CONFIG_RAM_START, CONFIG_RAM_START, CONFIG_RAM_SIZE, MAP_UNMAP, 0); return 0; } uint64_t e820_alloc_low_memory(uint32_t size) { uint32_t i; struct e820_entry *entry, *new_entry; /* We want memory in page boundary and integral multiple of pages */ size = ROUND_PAGE_UP(size); for (i = 0; i < e820_entries; i++) { entry = &e820[i]; uint64_t start, end, length; start = ROUND_PAGE_UP(entry->baseaddr); end = ROUND_PAGE_DOWN(entry->baseaddr + entry->length); length = end - start; length = (end > start) ? (end - start) : 0; /* Search for available low memory */ if ((entry->type != E820_TYPE_RAM) || (length < size) || (start + size > MEM_1M)) { continue; } /* found exact size of e820 entry */ if (length == size) { entry->type = E820_TYPE_RESERVED; e820_mem.total_mem_size -= size; return start; } /* * found entry with available memory larger than requested * alocate memory from the end of this entry at page boundary */ new_entry = &e820[e820_entries]; new_entry->type = E820_TYPE_RESERVED; new_entry->baseaddr = end - size; new_entry->length = entry->baseaddr + entry->length - new_entry->baseaddr; /* Shrink the existing entry and total available memory */ entry->length -= new_entry->length; e820_mem.total_mem_size -= new_entry->length; e820_entries++; return new_entry->baseaddr; } pr_fatal("Can't allocate memory under 1M from E820\n"); return ACRN_INVALID_HPA; } #ifdef CONFIG_START_VM0_BSP_64BIT /******************************************************************* * GUEST initial page table * * guest starts with long mode, HV needs to prepare Guest identity * mapped page table. * For SOS: * Guest page tables cover 0~4G space with 2M page size, will use * 6 pages memory for page tables. * For UOS(Trusty not enabled): * Guest page tables cover 0~4G space with 2M page size, will use * 6 pages memory for page tables. * For UOS(Trusty enabled): * Guest page tables cover 0~4G and trusy memory space with 2M page size, * will use 7 pages memory for page tables. * This API assume that the trusty memory is remapped to guest physical address * of 511G to 511G + 16MB * * FIXME: here the guest init page table will occupy at most * GUEST_INIT_PT_PAGE_NUM pages. Some check here: * - guest page table space should not override trampoline code area * (it's a little tricky here, as under current identical mapping, HV & SOS * share same memory under 1M; under uefi boot mode, the defered AP startup * need trampoline code area which reserved by uefi stub keep there * no change even after SOS startup) * - guest page table space should not override possible RSDP fix segment * * Anyway, it's a tmp solution, the init page tables should be totally removed * after guest realmode/32bit no paging mode got supported. ******************************************************************/ #define GUEST_INIT_PAGE_TABLE_SKIP_SIZE 0x8000UL #define GUEST_INIT_PAGE_TABLE_START (trampoline_start16_paddr + \ GUEST_INIT_PAGE_TABLE_SKIP_SIZE) #define GUEST_INIT_PT_PAGE_NUM 7 #define RSDP_F_ADDR 0xE0000 uint64_t create_guest_initial_paging(struct vm *vm) { uint64_t i = 0; uint64_t entry = 0; uint64_t entry_num = 0; uint64_t pdpt_base_paddr = 0; uint64_t pd_base_paddr = 0; uint64_t table_present = 0; uint64_t table_offset = 0; void *addr = NULL; void *pml4_addr = GPA2HVA(vm, GUEST_INIT_PAGE_TABLE_START); ASSERT((GUEST_INIT_PAGE_TABLE_START + 7 * PAGE_SIZE_4K) < RSDP_F_ADDR, "RSDP fix segment could be override"); if (GUEST_INIT_PAGE_TABLE_SKIP_SIZE < (unsigned long)&_ld_trampoline_size) { panic("guest init PTs override trampoline code"); } /* Using continuous memory for guest page tables, the total 4K page * number for it(without trusty) is GUEST_INIT_PT_PAGE_NUM-1. * here make sure they are init as 0 (page entry no present) */ memset(pml4_addr, 0, PAGE_SIZE_4K * GUEST_INIT_PT_PAGE_NUM-1); /* Write PML4E */ table_present = (IA32E_COMM_P_BIT | IA32E_COMM_RW_BIT); /* PML4 used 1 page, skip it to fetch PDPT */ pdpt_base_paddr = GUEST_INIT_PAGE_TABLE_START + PAGE_SIZE_4K; entry = pdpt_base_paddr | table_present; MEM_WRITE64(pml4_addr, entry); /* Write PDPTE, PDPT used 1 page, skip it to fetch PD */ pd_base_paddr = pdpt_base_paddr + PAGE_SIZE_4K; addr = pml4_addr + PAGE_SIZE_4K; /* Guest page tables cover 0~4G space with 2M page size */ for (i = 0; i < 4; i++) { entry = ((pd_base_paddr + (i * PAGE_SIZE_4K)) | table_present); MEM_WRITE64(addr, entry); addr += IA32E_COMM_ENTRY_SIZE; } /* Write PDE, PT used 4 pages */ table_present = (IA32E_PDPTE_PS_BIT | IA32E_COMM_P_BIT | IA32E_COMM_RW_BIT); /* Totally 2048(512*4) entries with 2M page size for 0~4G*/ entry_num = IA32E_NUM_ENTRIES * 4; addr = pml4_addr + 2 * PAGE_SIZE_4K; for (i = 0; i < entry_num; i++) { entry = (i * (1 << MMU_PDE_PAGE_SHIFT)) | table_present; MEM_WRITE64(addr, entry); addr += IA32E_COMM_ENTRY_SIZE; } /* For UOS, if trusty is enabled, * need to setup tempory page table for trusty * FIXME: this is a tempory solution for trusty enabling, * the final solution is that vSBL will setup guest page tables */ if (vm->sworld_control.sworld_enabled && !is_vm0(vm)) { /* clear page entry for trusty */ memset(pml4_addr + 6 * PAGE_SIZE_4K, 0, PAGE_SIZE_4K); /* Write PDPTE for trusy memory, PD will use 7th page */ pd_base_paddr = GUEST_INIT_PAGE_TABLE_START + (6 * PAGE_SIZE_4K); table_offset = IA32E_PDPTE_INDEX_CALC(TRUSTY_EPT_REBASE_GPA); addr = (pml4_addr + PAGE_SIZE_4K + table_offset); table_present = (IA32E_COMM_P_BIT | IA32E_COMM_RW_BIT); entry = (pd_base_paddr | table_present); MEM_WRITE64(addr, entry); /* Write PDE for trusty with 2M page size */ entry_num = TRUSTY_MEMORY_SIZE / (1 << MMU_PDE_PAGE_SHIFT); addr = pml4_addr + 6 * PAGE_SIZE_4K; table_present = (IA32E_PDPTE_PS_BIT | IA32E_COMM_P_BIT | IA32E_COMM_RW_BIT); for (i = 0; i < entry_num; i++) { entry = (TRUSTY_EPT_REBASE_GPA + (i * (1 << MMU_PDE_PAGE_SHIFT))) | table_present; MEM_WRITE64(addr, entry); addr += IA32E_COMM_ENTRY_SIZE; } } return GUEST_INIT_PAGE_TABLE_START; } #endif /******************************************************************* * GUEST initial GDT table * * If guest starts with protected mode, HV needs to prepare Guest GDT. ******************************************************************/ #define GUEST_INIT_GDT_SKIP_SIZE 0x8000UL #define GUEST_INIT_GDT_START (trampoline_start16_paddr + \ GUEST_INIT_GDT_SKIP_SIZE) /* The GDT defined below compatible with linux kernel */ #define GUEST_INIT_GDT_DESC_0 (0x0) #define GUEST_INIT_GDT_DESC_1 (0x0) #define GUEST_INIT_GDT_DESC_2 (0x00CF9B000000FFFFUL) /* Linear Code */ #define GUEST_INIT_GDT_DESC_3 (0x00CF93000000FFFFUL) /* Linear Data */ static const uint64_t guest_init_gdt[] = { GUEST_INIT_GDT_DESC_0, GUEST_INIT_GDT_DESC_1, GUEST_INIT_GDT_DESC_2, GUEST_INIT_GDT_DESC_3, }; uint32_t create_guest_init_gdt(struct vm *vm, uint32_t *limit) { void *gtd_addr = GPA2HVA(vm, GUEST_INIT_GDT_START); *limit = sizeof(guest_init_gdt) - 1; memcpy_s(gtd_addr, 64, guest_init_gdt, sizeof(guest_init_gdt)); return GUEST_INIT_GDT_START; };