/* * Copyright (C) 2018 Intel Corporation. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include static unsigned long pcpu_used_bitmap; void init_scheduler(void) { struct sched_context *ctx; uint32_t i; for (i = 0U; i < phys_cpu_num; i++) { ctx = &per_cpu(sched_ctx, i); spinlock_init(&ctx->runqueue_lock); spinlock_init(&ctx->scheduler_lock); INIT_LIST_HEAD(&ctx->runqueue); ctx->flags = 0UL; ctx->curr_vcpu = NULL; } } void get_schedule_lock(uint16_t pcpu_id) { struct sched_context *ctx = &per_cpu(sched_ctx, pcpu_id); spinlock_obtain(&ctx->scheduler_lock); } void release_schedule_lock(uint16_t pcpu_id) { struct sched_context *ctx = &per_cpu(sched_ctx, pcpu_id); spinlock_release(&ctx->scheduler_lock); } uint16_t allocate_pcpu(void) { uint16_t i; for (i = 0U; i < phys_cpu_num; i++) { if (bitmap_test_and_set_lock(i, &pcpu_used_bitmap) == 0) { return i; } } return INVALID_CPU_ID; } void set_pcpu_used(uint16_t pcpu_id) { bitmap_set_lock(pcpu_id, &pcpu_used_bitmap); } void free_pcpu(uint16_t pcpu_id) { bitmap_clear_lock(pcpu_id, &pcpu_used_bitmap); } void add_vcpu_to_runqueue(struct acrn_vcpu *vcpu) { uint16_t pcpu_id = vcpu->pcpu_id; struct sched_context *ctx = &per_cpu(sched_ctx, pcpu_id); spinlock_obtain(&ctx->runqueue_lock); if (list_empty(&vcpu->run_list)) { list_add_tail(&vcpu->run_list, &ctx->runqueue); } spinlock_release(&ctx->runqueue_lock); } void remove_vcpu_from_runqueue(struct acrn_vcpu *vcpu) { uint16_t pcpu_id = vcpu->pcpu_id; struct sched_context *ctx = &per_cpu(sched_ctx, pcpu_id); spinlock_obtain(&ctx->runqueue_lock); list_del_init(&vcpu->run_list); spinlock_release(&ctx->runqueue_lock); } static struct acrn_vcpu *select_next_vcpu(uint16_t pcpu_id) { struct sched_context *ctx = &per_cpu(sched_ctx, pcpu_id); struct acrn_vcpu *vcpu = NULL; spinlock_obtain(&ctx->runqueue_lock); if (!list_empty(&ctx->runqueue)) { vcpu = get_first_item(&ctx->runqueue, struct acrn_vcpu, run_list); } spinlock_release(&ctx->runqueue_lock); return vcpu; } void make_reschedule_request(const struct acrn_vcpu *vcpu) { struct sched_context *ctx = &per_cpu(sched_ctx, vcpu->pcpu_id); bitmap_set_lock(NEED_RESCHEDULE, &ctx->flags); if (get_cpu_id() != vcpu->pcpu_id) { send_single_ipi(vcpu->pcpu_id, VECTOR_NOTIFY_VCPU); } } int need_reschedule(uint16_t pcpu_id) { struct sched_context *ctx = &per_cpu(sched_ctx, pcpu_id); return bitmap_test_and_clear_lock(NEED_RESCHEDULE, &ctx->flags); } static void context_switch_out(struct acrn_vcpu *vcpu) { /* if it's idle thread, no action for switch out */ if (vcpu == NULL) { return; } /* cancel event(int, gp, nmi and exception) injection */ cancel_event_injection(vcpu); atomic_store32(&vcpu->running, 0U); /* do prev vcpu context switch out */ /* For now, we don't need to invalid ept. * But if we have more than one vcpu on one pcpu, * we need add ept invalid operation here. */ } static void context_switch_in(struct acrn_vcpu *vcpu) { /* update current_vcpu */ get_cpu_var(sched_ctx).curr_vcpu = vcpu; /* if it's idle thread, no action for switch out */ if (vcpu == NULL) { return; } atomic_store32(&vcpu->running, 1U); /* FIXME: * Now, we don't need to load new vcpu VMCS because * we only do switch between vcpu loop and idle loop. * If we have more than one vcpu on on pcpu, need to * add VMCS load operation here. */ } void make_pcpu_offline(uint16_t pcpu_id) { struct sched_context *ctx = &per_cpu(sched_ctx, pcpu_id); bitmap_set_lock(NEED_OFFLINE, &ctx->flags); if (get_cpu_id() != pcpu_id) { send_single_ipi(pcpu_id, VECTOR_NOTIFY_VCPU); } } int need_offline(uint16_t pcpu_id) { struct sched_context *ctx = &per_cpu(sched_ctx, pcpu_id); return bitmap_test_and_clear_lock(NEED_OFFLINE, &ctx->flags); } void default_idle(void) { uint16_t pcpu_id = get_cpu_id(); while (1) { if (need_reschedule(pcpu_id) != 0) { schedule(); } else if (need_offline(pcpu_id) != 0) { cpu_dead(pcpu_id); } else { CPU_IRQ_ENABLE(); handle_complete_ioreq(pcpu_id); cpu_do_idle(); CPU_IRQ_DISABLE(); } } } static void switch_to(struct acrn_vcpu *curr) { /* * reset stack pointer here. Otherwise, schedule * is recursive call and stack will overflow finally. */ uint64_t cur_sp = (uint64_t)&get_cpu_var(stack)[CONFIG_STACK_SIZE]; if (curr == NULL) { asm volatile ("movq %1, %%rsp\n" "movq $0, %%rdi\n" "call 22f\n" "11: \n" "pause\n" "jmp 11b\n" "22:\n" "mov %0, (%%rsp)\n" "ret\n" : : "a"(default_idle), "r"(cur_sp) : "memory"); } else { asm volatile ("movq %2, %%rsp\n" "movq %0, %%rdi\n" "call 44f\n" "33: \n" "pause\n" "jmp 33b\n" "44:\n" "mov %1, (%%rsp)\n" "ret\n" : : "c"(curr), "a"(vcpu_thread), "r"(cur_sp) : "memory"); } } void schedule(void) { uint16_t pcpu_id = get_cpu_id(); struct acrn_vcpu *next = NULL; struct acrn_vcpu *prev = per_cpu(sched_ctx, pcpu_id).curr_vcpu; get_schedule_lock(pcpu_id); next = select_next_vcpu(pcpu_id); if (prev == next) { release_schedule_lock(pcpu_id); return; } context_switch_out(prev); context_switch_in(next); release_schedule_lock(pcpu_id); switch_to(next); ASSERT(false, "Shouldn't go here"); }