/*- * Copyright (c) 2012 NetApp, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ /* * Memory ranges are represented with an RB tree. On insertion, the range * is checked for overlaps. On lookup, the key has the same base and limit * so it can be searched within the range. */ #include #include #include #include #include #include #include "vmm.h" #include "mem.h" #include "tree.h" struct mmio_rb_range { RB_ENTRY(mmio_rb_range) mr_link; /* RB tree links */ struct mem_range mr_param; uint64_t mr_base; uint64_t mr_end; bool enabled; }; struct mmio_rb_tree; RB_PROTOTYPE(mmio_rb_tree, mmio_rb_range, mr_link, mmio_rb_range_compare); RB_HEAD(mmio_rb_tree, mmio_rb_range) mmio_rb_root, mmio_rb_fallback; /* * Per-VM cache. Since most accesses from a vCPU will be to * consecutive addresses in a range, it makes sense to cache the * result of a lookup. */ static struct mmio_rb_range *mmio_hint; static pthread_rwlock_t mmio_rwlock; static int mmio_rb_range_compare(struct mmio_rb_range *a, struct mmio_rb_range *b) { if (a->mr_end < b->mr_base) return -1; else if (a->mr_base > b->mr_end) return 1; return 0; } static int mmio_rb_lookup(struct mmio_rb_tree *rbt, uint64_t addr, struct mmio_rb_range **entry) { struct mmio_rb_range find, *res; find.mr_base = find.mr_end = addr; res = RB_FIND(mmio_rb_tree, rbt, &find); if (res != NULL) { *entry = res; return 0; } return -1; } __attribute__((unused)) static int mmio_rb_add(struct mmio_rb_tree *rbt, struct mmio_rb_range *new) { struct mmio_rb_range *overlap; overlap = RB_INSERT(mmio_rb_tree, rbt, new); if (overlap != NULL) { #ifdef RB_DEBUG printf("overlap detected: new %lx:%lx, tree %lx:%lx\n", new->mr_base, new->mr_end, overlap->mr_base, overlap->mr_end); #endif return -1; } return 0; } #if RB_DEBUG static void mmio_rb_dump(struct mmio_rb_tree *rbt) { struct mmio_rb_range *np; pthread_rwlock_rdlock(&mmio_rwlock); RB_FOREACH(np, mmio_rb_tree, rbt) { printf(" %lx:%lx, %s\n", np->mr_base, np->mr_end, np->mr_param.name); } pthread_rwlock_unlock(&mmio_rwlock); } #endif RB_GENERATE(mmio_rb_tree, mmio_rb_range, mr_link, mmio_rb_range_compare); __attribute__((unused)) static int mem_read(void *ctx, int vcpu, uint64_t gpa, uint64_t *rval, int size, void *arg) { int error; struct mem_range *mr = arg; error = (*mr->handler)(ctx, vcpu, MEM_F_READ, gpa, size, rval, mr->arg1, mr->arg2); return error; } __attribute__((unused)) static int mem_write(void *ctx, int vcpu, uint64_t gpa, uint64_t wval, int size, void *arg) { int error; struct mem_range *mr = arg; error = (*mr->handler)(ctx, vcpu, MEM_F_WRITE, gpa, size, &wval, mr->arg1, mr->arg2); return error; } int emulate_mem(struct vmctx *ctx, struct mmio_request *mmio_req) { uint64_t paddr = mmio_req->address; int size = mmio_req->size; struct mmio_rb_range *entry = NULL; int err; pthread_rwlock_rdlock(&mmio_rwlock); /* * First check the per-VM cache */ if (mmio_hint && paddr >= mmio_hint->mr_base && paddr <= mmio_hint->mr_end) entry = mmio_hint; if (entry == NULL) { if (mmio_rb_lookup(&mmio_rb_root, paddr, &entry) == 0) /* Update the per-VMU cache */ mmio_hint = entry; else if (mmio_rb_lookup(&mmio_rb_fallback, paddr, &entry)) { pthread_rwlock_unlock(&mmio_rwlock); return -ESRCH; } } assert(entry != NULL); if (entry->enabled == false) { return -1; } if (mmio_req->direction == REQUEST_READ) err = mem_read(ctx, 0, paddr, (uint64_t *)&mmio_req->value, size, &entry->mr_param); else err = mem_write(ctx, 0, paddr, mmio_req->value, size, &entry->mr_param); pthread_rwlock_unlock(&mmio_rwlock); return err; } static int register_mem_int(struct mmio_rb_tree *rbt, struct mem_range *memp) { struct mmio_rb_range *entry, *mrp; int err; err = 0; mrp = malloc(sizeof(struct mmio_rb_range)); if (mrp != NULL) { mrp->mr_param = *memp; mrp->mr_base = memp->base; mrp->mr_end = memp->base + memp->size - 1; mrp->enabled = true; pthread_rwlock_wrlock(&mmio_rwlock); if (mmio_rb_lookup(rbt, memp->base, &entry) != 0) err = mmio_rb_add(rbt, mrp); pthread_rwlock_unlock(&mmio_rwlock); if (err) free(mrp); } else err = -1; return err; } int disable_mem(struct mem_range *memp) { uint64_t paddr = memp->base; struct mmio_rb_range *entry = NULL; pthread_rwlock_rdlock(&mmio_rwlock); /* * First check the per-VM cache */ if (mmio_hint && paddr >= mmio_hint->mr_base && paddr <= mmio_hint->mr_end) entry = mmio_hint; if (entry == NULL) { if (mmio_rb_lookup(&mmio_rb_root, paddr, &entry) == 0) /* Update the per-VMU cache */ mmio_hint = entry; else if (mmio_rb_lookup(&mmio_rb_fallback, paddr, &entry)) { pthread_rwlock_unlock(&mmio_rwlock); return -ESRCH; } } assert(entry != NULL); entry->enabled = false; pthread_rwlock_unlock(&mmio_rwlock); return 0; } int enable_mem(struct mem_range *memp) { uint64_t paddr = memp->base; struct mmio_rb_range *entry = NULL; pthread_rwlock_rdlock(&mmio_rwlock); /* * First check the per-VM cache */ if (mmio_hint && paddr >= mmio_hint->mr_base && paddr <= mmio_hint->mr_end) entry = mmio_hint; if (entry == NULL) { if (mmio_rb_lookup(&mmio_rb_root, paddr, &entry) == 0) /* Update the per-VMU cache */ mmio_hint = entry; else if (mmio_rb_lookup(&mmio_rb_fallback, paddr, &entry)) { pthread_rwlock_unlock(&mmio_rwlock); return -ESRCH; } } assert(entry != NULL); entry->enabled = true; pthread_rwlock_unlock(&mmio_rwlock); return 0; } int register_mem(struct mem_range *memp) { return register_mem_int(&mmio_rb_root, memp); } int register_mem_fallback(struct mem_range *memp) { return register_mem_int(&mmio_rb_fallback, memp); } int unregister_mem_fallback(struct mem_range *memp) { struct mem_range *mr; struct mmio_rb_range *entry = NULL; int err; pthread_rwlock_wrlock(&mmio_rwlock); err = mmio_rb_lookup(&mmio_rb_fallback, memp->base, &entry); if (err == 0) { mr = &entry->mr_param; assert(mr->name == memp->name); assert(mr->base == memp->base && mr->size == memp->size); assert((mr->flags & MEM_F_IMMUTABLE) == 0); RB_REMOVE(mmio_rb_tree, &mmio_rb_fallback, entry); /* flush Per-VM cache */ if (mmio_hint == entry) mmio_hint = NULL; } pthread_rwlock_unlock(&mmio_rwlock); if (entry) free(entry); return err; } int unregister_mem(struct mem_range *memp) { struct mem_range *mr; struct mmio_rb_range *entry = NULL; int err; pthread_rwlock_wrlock(&mmio_rwlock); err = mmio_rb_lookup(&mmio_rb_root, memp->base, &entry); if (err == 0) { mr = &entry->mr_param; assert(mr->name == memp->name); assert(mr->base == memp->base && mr->size == memp->size); assert((mr->flags & MEM_F_IMMUTABLE) == 0); RB_REMOVE(mmio_rb_tree, &mmio_rb_root, entry); /* flush Per-VM cache */ if (mmio_hint == entry) mmio_hint = NULL; } pthread_rwlock_unlock(&mmio_rwlock); if (entry) free(entry); return err; } void init_mem(void) { RB_INIT(&mmio_rb_root); RB_INIT(&mmio_rb_fallback); pthread_rwlock_init(&mmio_rwlock, NULL); }