acrn-hypervisor/hypervisor/boot/reloc.c

230 lines
5.9 KiB
C
Raw Normal View History

/*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <hypervisor.h>
#include <reloc.h>
#include <vm0_boot.h>
struct Elf64_Dyn {
uint64_t d_tag;
uint64_t d_ptr;
};
#define DT_NULL 0 /* end of .dynamic section */
#define DT_RELA 7 /* relocation table */
#define DT_RELASZ 8 /* size of reloc table */
#define DT_RELAENT 9 /* size of one entry */
struct Elf64_Rel {
uint64_t r_offset;
uint64_t r_info;
uint64_t reserved;
};
#define ELF64_R_TYPE(i) ((i) & 0xffffffff)
#define R_X86_64_RELATIVE 8
uint64_t trampoline_start16_paddr;
/* get the delta between CONFIG_RAM_START and the actual load address */
uint64_t get_hv_image_delta(void)
{
uint64_t addr;
asm volatile (" call 0f\n"
"0: pop %%rax\n"
" sub $0b, %%rax\n"
" mov %%rax, %0\n"
: "=m" (addr)
:
: "%rax");
return addr;
}
/* get the actual Hypervisor load address */
uint64_t get_hv_image_base(void)
{
return (get_hv_image_delta() + CONFIG_RAM_START);
}
/*
* Because trampoline code is relocated in different way, if HV code
* accesses trampoline using relative addressing, it needs to take
* out the HV relocation delta
*
* This function is valid if:
* - The hpa of HV code is always higher than trampoline code
* - The HV code is always relocated to higher address, compared
* with CONFIG_RAM_START
*/
static uint64_t trampoline_relo_addr(void *addr)
{
return (uint64_t)addr - get_hv_image_delta();
}
void _relocate(void)
{
#ifdef CONFIG_RELOC
struct Elf64_Dyn *dyn;
struct Elf64_Rel *start = NULL, *end = NULL;
uint64_t delta, size = 0;
uint64_t trampoline_end;
uint64_t primary_32_start, primary_32_end;
uint64_t *addr;
/* get the delta that needs to be patched */
delta = get_hv_image_delta();
if (delta == 0U)
return;
/* Look for the descriptoin of relocation sections */
for (dyn = (struct Elf64_Dyn *)_DYNAMIC; dyn->d_tag != DT_NULL; dyn++) {
switch (dyn->d_tag) {
case DT_RELA:
start = (struct Elf64_Rel *)(dyn->d_ptr + delta);
break;
case DT_RELASZ:
end = (struct Elf64_Rel *)start + dyn->d_ptr;
break;
case DT_RELAENT:
size = dyn->d_ptr;
break;
}
}
/* Sanity check */
if ((start == NULL) || (size == 0U))
return;
/*
* Need to subtract the relocation delta to get the correct
* absolute addresses
*/
trampoline_end = (uint64_t)(&_ld_trampoline_end) - delta;
primary_32_start = (uint64_t)(&cpu_primary_start_32) - delta;
primary_32_end = (uint64_t)(&cpu_primary_start_64) - delta;
while (start < end) {
if ((ELF64_R_TYPE(start->r_info)) == R_X86_64_RELATIVE) {
addr = (uint64_t *)(delta + start->r_offset);
/*
* we won't fixup any trampoline.S and cpu_primary.S here
* for a number of reasons:
*
* - trampoline code itself takes another relocation,
* so any entries for trampoline symbols can't be fixed up
* through .rela sections
* - In cpu_primary.S, the 32 bits code doesn't need relocation
* - Linker option "-z noreloc-overflow" could force R_X86_32
* to R_X86_64 in the relocation sections, which could make
* the fixed up code dirty. Even if relocation for 32 bits
* is needed in the future, it's recommended to do it
* explicitly in the assembly code to avoid confusion.
*/
if ((start->r_offset > trampoline_end) &&
((start->r_offset < primary_32_start) ||
(start->r_offset > primary_32_end))) {
*addr += delta;
}
}
start = (struct Elf64_Rel *)((char *)start + size);
}
#endif
}
uint64_t read_trampoline_sym(void *sym)
{
uint64_t *hva;
hva = hpa2hva(trampoline_start16_paddr) + trampoline_relo_addr(sym);
return *hva;
}
void write_trampoline_sym(void *sym, uint64_t val)
{
uint64_t *hva;
hva = hpa2hva(trampoline_start16_paddr) + trampoline_relo_addr(sym);
*hva = val;
}
static void update_trampoline_code_refs(uint64_t dest_pa)
{
void *ptr;
uint64_t val;
int i;
/*
* calculate the fixup CS:IP according to fixup target address
* dynamically.
*
* trampoline code starts in real mode,
* so the target addres is HPA
*/
val = dest_pa + trampoline_relo_addr(&trampoline_fixup_target);
ptr = hpa2hva(dest_pa + trampoline_relo_addr(&trampoline_fixup_cs));
*(uint16_t *)(ptr) = (uint16_t)((val >> 4) & 0xFFFFU);
ptr = hpa2hva(dest_pa + trampoline_relo_addr(&trampoline_fixup_ip));
*(uint16_t *)(ptr) = (uint16_t)(val & 0xfU);
/* Update temporary page tables */
ptr = hpa2hva(dest_pa +
trampoline_relo_addr(&CPU_Boot_Page_Tables_ptr));
*(uint32_t *)(ptr) += (uint32_t)dest_pa;
ptr = hpa2hva(dest_pa +
trampoline_relo_addr(&CPU_Boot_Page_Tables_Start));
*(uint64_t *)(ptr) += dest_pa;
ptr = hpa2hva(dest_pa + trampoline_relo_addr(&trampoline_pdpt_addr));
for (i = 0; i < 4; i++) {
*(uint64_t *)(ptr + sizeof(uint64_t) * i) += dest_pa;
}
/* update the gdt base pointer with relocated offset */
ptr = hpa2hva(dest_pa + trampoline_relo_addr(&trampoline_gdt_ptr));
*(uint64_t *)(ptr + 2) += dest_pa;
/* update trampoline jump pointer with relocated offset */
ptr = hpa2hva(dest_pa +
trampoline_relo_addr(&trampoline_start64_fixup));
*(uint32_t *)ptr += dest_pa;
/* update trampoline's main entry pointer */
ptr = hpa2hva(dest_pa + trampoline_relo_addr(main_entry));
*(uint64_t *)ptr += get_hv_image_delta();
/* update trampoline's spinlock pointer */
ptr = hpa2hva(dest_pa + trampoline_relo_addr(&trampoline_spinlock_ptr));
*(uint64_t *)ptr += get_hv_image_delta();
}
uint64_t prepare_trampoline(void)
{
uint64_t size, dest_pa;
size = (uint64_t)(&_ld_trampoline_end - &_ld_trampoline_start);
#ifndef CONFIG_EFI_STUB
dest_pa = e820_alloc_low_memory(CONFIG_LOW_RAM_SIZE);
#else
dest_pa = (uint64_t)get_ap_trampoline_buf();
#endif
pr_dbg("trampoline code: %llx size %x", dest_pa, size);
/* Copy segment for AP initialization code below 1MB */
(void)memcpy_s(hpa2hva(dest_pa), (size_t)size, &_ld_trampoline_load,
(size_t)size);
update_trampoline_code_refs(dest_pa);
trampoline_start16_paddr = dest_pa;
return dest_pa;
}