acrn-hypervisor/hypervisor/arch/x86/trusty.c

467 lines
15 KiB
C
Raw Normal View History

/*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <hypervisor.h>
#include <hkdf.h>
#define TRUSTY_VERSION 1
struct trusty_mem {
/* The first page of trusty memory is reserved for key_info and
* trusty_startup_param.
*/
union {
struct {
struct key_info key_info;
struct trusty_startup_param startup_param;
} data;
uint8_t page[CPU_PAGE_SIZE];
} first_page;
/* The left memory is for trusty's code/data/heap/stack
*/
uint8_t left_mem[0];
};
static struct key_info g_key_info = {
.size_of_this_struct = sizeof(g_key_info),
.version = 0,
.platform = 3,
.num_seeds = 1
};
#define save_segment(seg, SEG_NAME) \
{ \
seg.selector = exec_vmread(VMX_GUEST_##SEG_NAME##_SEL); \
seg.base = exec_vmread(VMX_GUEST_##SEG_NAME##_BASE); \
seg.limit = exec_vmread(VMX_GUEST_##SEG_NAME##_LIMIT); \
seg.attr = exec_vmread(VMX_GUEST_##SEG_NAME##_ATTR); \
}
#define load_segment(seg, SEG_NAME) \
{ \
exec_vmwrite(VMX_GUEST_##SEG_NAME##_SEL, seg.selector); \
exec_vmwrite(VMX_GUEST_##SEG_NAME##_BASE, seg.base); \
exec_vmwrite(VMX_GUEST_##SEG_NAME##_LIMIT, seg.limit); \
exec_vmwrite(VMX_GUEST_##SEG_NAME##_ATTR, seg.attr); \
}
static void create_secure_world_ept(struct vm *vm, uint64_t gpa_orig,
uint64_t size, uint64_t gpa_rebased)
{
uint64_t nworld_pml4e = 0;
uint64_t sworld_pml4e = 0;
struct map_params map_params;
uint64_t gpa = 0;
uint64_t hpa = gpa2hpa(vm, gpa_orig);
uint64_t table_present = (IA32E_EPT_R_BIT |
IA32E_EPT_W_BIT |
IA32E_EPT_X_BIT);
void *sub_table_addr = NULL, *pml4_base = NULL;
struct vm *vm0 = get_vm_from_vmid(0);
int i;
struct vcpu *vcpu;
if (vm0 == NULL) {
pr_err("Parse vm0 context failed.");
return;
}
if (!vm->sworld_control.sworld_enabled
|| vm->arch_vm.sworld_eptp != 0) {
pr_err("Sworld is not enabled or Sworld eptp is not NULL");
return;
}
/* Check the physical address should be continuous */
if (!check_continuous_hpa(vm, gpa_orig, size)) {
ASSERT(false, "The physical addr is not continuous for Trusty");
return;
}
map_params.page_table_type = PTT_EPT;
map_params.pml4_inverted = HPA2HVA(vm->arch_vm.m2p);
/* Unmap gpa_orig~gpa_orig+size from guest normal world ept mapping */
map_params.pml4_base = HPA2HVA(vm->arch_vm.nworld_eptp);
unmap_mem(&map_params, (void *)hpa, (void *)gpa_orig, size, 0);
/* Copy PDPT entries from Normal world to Secure world
* Secure world can access Normal World's memory,
* but Normal World can not access Secure World's memory.
* The PML4/PDPT for Secure world are separated from
* Normal World.PD/PT are shared in both Secure world's EPT
* and Normal World's EPT
*/
pml4_base = alloc_paging_struct();
vm->arch_vm.sworld_eptp = HVA2HPA(pml4_base);
/* The trusty memory is remapped to guest physical address
* of gpa_rebased to gpa_rebased + size
*/
sub_table_addr = alloc_paging_struct();
sworld_pml4e = HVA2HPA(sub_table_addr) | table_present;
MEM_WRITE64(pml4_base, sworld_pml4e);
nworld_pml4e = MEM_READ64(HPA2HVA(vm->arch_vm.nworld_eptp));
memcpy_s(HPA2HVA(sworld_pml4e & IA32E_REF_MASK), CPU_PAGE_SIZE,
HPA2HVA(nworld_pml4e & IA32E_REF_MASK), CPU_PAGE_SIZE);
/* Map gpa_rebased~gpa_rebased+size
* to secure ept mapping
*/
map_params.pml4_base = pml4_base;
map_mem(&map_params, (void *)hpa,
(void *)gpa_rebased, size,
(IA32E_EPT_R_BIT |
IA32E_EPT_W_BIT |
IA32E_EPT_X_BIT |
IA32E_EPT_WB));
/* Unmap trusty memory space from sos ept mapping*/
map_params.pml4_base = HPA2HVA(vm0->arch_vm.nworld_eptp);
map_params.pml4_inverted = HPA2HVA(vm0->arch_vm.m2p);
/* Get the gpa address in SOS */
gpa = hpa2gpa(vm0, hpa);
unmap_mem(&map_params, (void *)hpa, (void *)gpa, size, 0);
/* Backup secure world info, will be used when
* destroy secure world */
vm->sworld_control.sworld_memory.base_gpa = gpa;
vm->sworld_control.sworld_memory.base_hpa = hpa;
vm->sworld_control.sworld_memory.length = size;
foreach_vcpu(i, vm, vcpu) {
vcpu_make_request(vcpu, ACRN_REQUEST_EPT_FLUSH);
}
foreach_vcpu(i, vm0, vcpu) {
vcpu_make_request(vcpu, ACRN_REQUEST_EPT_FLUSH);
}
}
void destroy_secure_world(struct vm *vm)
{
struct map_params map_params;
struct vm *vm0 = get_vm_from_vmid(0);
if (vm0 == NULL) {
pr_err("Parse vm0 context failed.");
return;
}
/* clear trusty memory space */
memset(HPA2HVA(vm->sworld_control.sworld_memory.base_hpa),
0, vm->sworld_control.sworld_memory.length);
/* restore memory to SOS ept mapping */
map_params.page_table_type = PTT_EPT;
map_params.pml4_base = HPA2HVA(vm0->arch_vm.nworld_eptp);
map_params.pml4_inverted = HPA2HVA(vm0->arch_vm.m2p);
map_mem(&map_params, (void *)vm->sworld_control.sworld_memory.base_hpa,
(void *)vm->sworld_control.sworld_memory.base_gpa,
vm->sworld_control.sworld_memory.length,
(IA32E_EPT_R_BIT |
IA32E_EPT_W_BIT |
IA32E_EPT_X_BIT |
IA32E_EPT_WB));
}
static void save_world_ctx(struct run_context *context)
{
/* VMCS GUEST field */
/* TSC_OFFSET, CR3, RIP, RSP, RFLAGS already saved on VMEXIT */
context->cr0 = exec_vmread(VMX_CR0_READ_SHADOW);
context->cr4 = exec_vmread(VMX_CR4_READ_SHADOW);
context->vmx_cr0 = exec_vmread(VMX_GUEST_CR0);
context->vmx_cr4 = exec_vmread(VMX_GUEST_CR4);
context->dr7 = exec_vmread(VMX_GUEST_DR7);
context->ia32_debugctl = exec_vmread64(VMX_GUEST_IA32_DEBUGCTL_FULL);
/*
* Similar to CR0 and CR4, the actual value of guest's IA32_PAT MSR
* (represented by context->vmx_ia32_pat) could be different from the
* value that guest reads (represented by context->ia32_pat).
*
* the wrmsr handler keeps track of 'ia32_pat', and we only
* need to load 'vmx_ia32_pat' here.
*/
context->vmx_ia32_pat = exec_vmread(VMX_GUEST_IA32_PAT_FULL);
context->ia32_efer = exec_vmread64(VMX_GUEST_IA32_EFER_FULL);
context->ia32_sysenter_cs = exec_vmread(VMX_GUEST_IA32_SYSENTER_CS);
context->ia32_sysenter_esp = exec_vmread(VMX_GUEST_IA32_SYSENTER_ESP);
context->ia32_sysenter_eip = exec_vmread(VMX_GUEST_IA32_SYSENTER_EIP);
save_segment(context->cs, CS);
save_segment(context->ss, SS);
save_segment(context->ds, DS);
save_segment(context->es, ES);
save_segment(context->fs, FS);
save_segment(context->gs, GS);
save_segment(context->tr, TR);
save_segment(context->ldtr, LDTR);
/* Only base and limit for IDTR and GDTR */
context->idtr.base = exec_vmread(VMX_GUEST_IDTR_BASE);
context->idtr.limit = exec_vmread(VMX_GUEST_IDTR_LIMIT);
context->gdtr.base = exec_vmread(VMX_GUEST_GDTR_BASE);
context->gdtr.limit = exec_vmread(VMX_GUEST_GDTR_LIMIT);
/* MSRs which not in the VMCS */
context->ia32_star = msr_read(MSR_IA32_STAR);
context->ia32_lstar = msr_read(MSR_IA32_LSTAR);
context->ia32_fmask = msr_read(MSR_IA32_FMASK);
context->ia32_kernel_gs_base = msr_read(MSR_IA32_KERNEL_GS_BASE);
/* FX area */
asm volatile("fxsave (%0)"
: : "r" (context->fxstore_guest_area) : "memory");
}
static void load_world_ctx(struct run_context *context)
{
/* VMCS Execution field */
exec_vmwrite64(VMX_TSC_OFFSET_FULL, context->tsc_offset);
/* VMCS GUEST field */
exec_vmwrite(VMX_CR0_READ_SHADOW, context->cr0);
exec_vmwrite(VMX_GUEST_CR3, context->cr3);
exec_vmwrite(VMX_CR4_READ_SHADOW, context->cr4);
exec_vmwrite(VMX_GUEST_CR0, context->vmx_cr0);
exec_vmwrite(VMX_GUEST_CR4, context->vmx_cr4);
exec_vmwrite(VMX_GUEST_RIP, context->rip);
exec_vmwrite(VMX_GUEST_RSP, context->rsp);
exec_vmwrite(VMX_GUEST_RFLAGS, context->rflags);
exec_vmwrite(VMX_GUEST_DR7, context->dr7);
exec_vmwrite64(VMX_GUEST_IA32_DEBUGCTL_FULL, context->ia32_debugctl);
exec_vmwrite64(VMX_GUEST_IA32_PAT_FULL, context->vmx_ia32_pat);
exec_vmwrite64(VMX_GUEST_IA32_EFER_FULL, context->ia32_efer);
exec_vmwrite(VMX_GUEST_IA32_SYSENTER_CS, context->ia32_sysenter_cs);
exec_vmwrite(VMX_GUEST_IA32_SYSENTER_ESP, context->ia32_sysenter_esp);
exec_vmwrite(VMX_GUEST_IA32_SYSENTER_EIP, context->ia32_sysenter_eip);
load_segment(context->cs, CS);
load_segment(context->ss, SS);
load_segment(context->ds, DS);
load_segment(context->es, ES);
load_segment(context->fs, FS);
load_segment(context->gs, GS);
load_segment(context->tr, TR);
load_segment(context->ldtr, LDTR);
/* Only base and limit for IDTR and GDTR */
exec_vmwrite(VMX_GUEST_IDTR_BASE, context->idtr.base);
exec_vmwrite(VMX_GUEST_IDTR_LIMIT, context->idtr.limit);
exec_vmwrite(VMX_GUEST_GDTR_BASE, context->gdtr.base);
exec_vmwrite(VMX_GUEST_GDTR_LIMIT, context->gdtr.limit);
/* MSRs which not in the VMCS */
msr_write(MSR_IA32_STAR, context->ia32_star);
msr_write(MSR_IA32_LSTAR, context->ia32_lstar);
msr_write(MSR_IA32_FMASK, context->ia32_fmask);
msr_write(MSR_IA32_KERNEL_GS_BASE, context->ia32_kernel_gs_base);
/* FX area */
asm volatile("fxrstor (%0)" : : "r" (context->fxstore_guest_area));
}
static void copy_smc_param(struct run_context *prev_ctx,
struct run_context *next_ctx)
{
next_ctx->guest_cpu_regs.regs.rdi = prev_ctx->guest_cpu_regs.regs.rdi;
next_ctx->guest_cpu_regs.regs.rsi = prev_ctx->guest_cpu_regs.regs.rsi;
next_ctx->guest_cpu_regs.regs.rdx = prev_ctx->guest_cpu_regs.regs.rdx;
next_ctx->guest_cpu_regs.regs.rbx = prev_ctx->guest_cpu_regs.regs.rbx;
}
void switch_world(struct vcpu *vcpu, int next_world)
{
struct vcpu_arch *arch_vcpu = &vcpu->arch_vcpu;
/* save previous world context */
save_world_ctx(&arch_vcpu->contexts[!next_world]);
/* load next world context */
load_world_ctx(&arch_vcpu->contexts[next_world]);
/* Copy SMC parameters: RDI, RSI, RDX, RBX */
copy_smc_param(&arch_vcpu->contexts[!next_world],
&arch_vcpu->contexts[next_world]);
/* load EPTP for next world */
if (next_world == NORMAL_WORLD) {
exec_vmwrite64(VMX_EPT_POINTER_FULL,
vcpu->vm->arch_vm.nworld_eptp | (3UL<<3) | 6UL);
} else {
exec_vmwrite64(VMX_EPT_POINTER_FULL,
vcpu->vm->arch_vm.sworld_eptp | (3UL<<3) | 6UL);
}
/* Update world index */
arch_vcpu->cur_context = next_world;
}
/* Put key_info and trusty_startup_param in the first Page of Trusty
* runtime memory
*/
static bool setup_trusty_info(struct vcpu *vcpu,
uint32_t mem_size, uint64_t mem_base_hpa)
{
uint32_t i;
struct trusty_mem *mem;
struct key_info *key_info;
mem = (struct trusty_mem *)(HPA2HVA(mem_base_hpa));
/* copy key_info to the first page of trusty memory */
memcpy_s(&mem->first_page.data.key_info, sizeof(g_key_info),
&g_key_info, sizeof(g_key_info));
memset(mem->first_page.data.key_info.dseed_list, 0,
sizeof(mem->first_page.data.key_info.dseed_list));
/* Derive dvseed from dseed for Trusty */
key_info = &mem->first_page.data.key_info;
for (i = 0; i < g_key_info.num_seeds; i++) {
if (hkdf_sha256(key_info->dseed_list[i].seed,
BUP_MKHI_BOOTLOADER_SEED_LEN,
g_key_info.dseed_list[i].seed,
BUP_MKHI_BOOTLOADER_SEED_LEN,
NULL, 0,
vcpu->vm->GUID, sizeof(vcpu->vm->GUID)) == 0) {
memset(key_info, 0, sizeof(struct key_info));
pr_err("%s: derive dvseed failed!", __func__);
return false;
}
}
/* Prepare trusty startup param */
mem->first_page.data.startup_param.size_of_this_struct =
sizeof(struct trusty_startup_param);
mem->first_page.data.startup_param.mem_size = mem_size;
mem->first_page.data.startup_param.tsc_per_ms = CYCLES_PER_MS;
mem->first_page.data.startup_param.trusty_mem_base =
TRUSTY_EPT_REBASE_GPA;
/* According to trusty boot protocol, it will use RDI as the
* address(GPA) of startup_param on boot. Currently, the startup_param
* is put in the first page of trusty memory just followed by key_info.
*/
vcpu->arch_vcpu.contexts[SECURE_WORLD].guest_cpu_regs.regs.rdi
= (uint64_t)TRUSTY_EPT_REBASE_GPA + sizeof(struct key_info);
return true;
}
/* Secure World will reuse environment of UOS_Loder since they are
* both booting from and running in 64bit mode, except GP registers.
* RIP, RSP and RDI are specified below, other GP registers are leaved
* as 0.
*/
static bool init_secure_world_env(struct vcpu *vcpu,
uint64_t entry_gpa,
uint64_t base_hpa,
uint32_t size)
{
vcpu->arch_vcpu.inst_len = 0;
vcpu->arch_vcpu.contexts[SECURE_WORLD].rip = entry_gpa;
vcpu->arch_vcpu.contexts[SECURE_WORLD].rsp =
TRUSTY_EPT_REBASE_GPA + size;
vcpu->arch_vcpu.contexts[SECURE_WORLD].tsc_offset = 0;
vcpu->arch_vcpu.contexts[SECURE_WORLD].cr0 =
vcpu->arch_vcpu.contexts[NORMAL_WORLD].cr0;
vcpu->arch_vcpu.contexts[SECURE_WORLD].cr4 =
vcpu->arch_vcpu.contexts[NORMAL_WORLD].cr4;
vcpu->arch_vcpu.contexts[SECURE_WORLD].vmx_cr0 =
vcpu->arch_vcpu.contexts[NORMAL_WORLD].vmx_cr0;
vcpu->arch_vcpu.contexts[SECURE_WORLD].vmx_cr4 =
vcpu->arch_vcpu.contexts[NORMAL_WORLD].vmx_cr4;
vcpu->arch_vcpu.contexts[SECURE_WORLD].ia32_pat =
vcpu->arch_vcpu.contexts[NORMAL_WORLD].ia32_pat;
vcpu->arch_vcpu.contexts[SECURE_WORLD].vmx_ia32_pat =
vcpu->arch_vcpu.contexts[NORMAL_WORLD].vmx_ia32_pat;
exec_vmwrite(VMX_GUEST_RSP,
TRUSTY_EPT_REBASE_GPA + size);
exec_vmwrite(VMX_TSC_OFFSET_FULL,
vcpu->arch_vcpu.contexts[SECURE_WORLD].tsc_offset);
return setup_trusty_info(vcpu, size, base_hpa);
}
bool initialize_trusty(struct vcpu *vcpu, uint64_t param)
{
uint64_t trusty_entry_gpa, trusty_base_gpa, trusty_base_hpa;
struct vm *vm = vcpu->vm;
struct trusty_boot_param *boot_param =
(struct trusty_boot_param *)(gpa2hpa(vm, param));
if (sizeof(struct trusty_boot_param) !=
boot_param->size_of_this_struct) {
pr_err("%s: sizeof(struct trusty_boot_param) mismatch!\n",
__func__);
return false;
}
if (boot_param->version != TRUSTY_VERSION) {
pr_err("%s: version of(trusty_boot_param) mismatch!\n",
__func__);
return false;
}
if (boot_param->entry_point == 0) {
pr_err("%s: Invalid entry point\n", __func__);
return false;
}
if (boot_param->base_addr == 0) {
pr_err("%s: Invalid memory base address\n", __func__);
return false;
}
trusty_entry_gpa = (uint64_t)boot_param->entry_point;
trusty_base_gpa = (uint64_t)boot_param->base_addr;
create_secure_world_ept(vm, trusty_base_gpa, boot_param->mem_size,
TRUSTY_EPT_REBASE_GPA);
trusty_base_hpa = vm->sworld_control.sworld_memory.base_hpa;
exec_vmwrite64(VMX_EPT_POINTER_FULL,
vm->arch_vm.sworld_eptp | (3UL<<3) | 6UL);
/* save Normal World context */
save_world_ctx(&vcpu->arch_vcpu.contexts[NORMAL_WORLD]);
/* init secure world environment */
if (init_secure_world_env(vcpu,
trusty_entry_gpa - trusty_base_gpa + TRUSTY_EPT_REBASE_GPA,
trusty_base_hpa, boot_param->mem_size)) {
/* switch to Secure World */
vcpu->arch_vcpu.cur_context = SECURE_WORLD;
return true;
}
return false;
}
void trusty_set_dseed(void *dseed, uint8_t dseed_num)
{
/* Use fake seed if input param is invalid */
if ((dseed == NULL) || (dseed_num == 0) ||
(dseed_num > BOOTLOADER_SEED_MAX_ENTRIES)) {
g_key_info.num_seeds = 1;
memset(g_key_info.dseed_list[0].seed, 0xA5,
sizeof(g_key_info.dseed_list[0].seed));
return;
}
g_key_info.num_seeds = dseed_num;
memcpy_s(&g_key_info.dseed_list, sizeof(struct seed_info) * dseed_num,
dseed, sizeof(struct seed_info) * dseed_num);
}