acrn-hypervisor/hypervisor/common/schedule.c

214 lines
4.5 KiB
C
Raw Normal View History

/*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <hypervisor.h>
#include <schedule.h>
static uint64_t pcpu_used_bitmap;
void init_scheduler(void)
{
struct sched_context *ctx;
uint32_t i;
uint16_t pcpu_nums = get_pcpu_nums();
for (i = 0U; i < pcpu_nums; i++) {
ctx = &per_cpu(sched_ctx, i);
spinlock_init(&ctx->runqueue_lock);
spinlock_init(&ctx->scheduler_lock);
INIT_LIST_HEAD(&ctx->runqueue);
ctx->flags = 0UL;
ctx->curr_obj = NULL;
}
}
void get_schedule_lock(uint16_t pcpu_id)
{
struct sched_context *ctx = &per_cpu(sched_ctx, pcpu_id);
spinlock_obtain(&ctx->scheduler_lock);
}
void release_schedule_lock(uint16_t pcpu_id)
{
struct sched_context *ctx = &per_cpu(sched_ctx, pcpu_id);
spinlock_release(&ctx->scheduler_lock);
}
uint16_t allocate_pcpu(void)
{
uint16_t i;
uint16_t ret = INVALID_CPU_ID;
uint16_t pcpu_nums = get_pcpu_nums();
for (i = 0U; i < pcpu_nums; i++) {
if (bitmap_test_and_set_lock(i, &pcpu_used_bitmap) == 0) {
ret = i;
break;
}
}
return ret;
}
void set_pcpu_used(uint16_t pcpu_id)
{
bitmap_set_lock(pcpu_id, &pcpu_used_bitmap);
}
void free_pcpu(uint16_t pcpu_id)
{
bitmap_clear_lock(pcpu_id, &pcpu_used_bitmap);
}
void add_to_cpu_runqueue(struct sched_object *obj, uint16_t pcpu_id)
{
struct sched_context *ctx = &per_cpu(sched_ctx, pcpu_id);
spinlock_obtain(&ctx->runqueue_lock);
if (list_empty(&obj->run_list)) {
list_add_tail(&obj->run_list, &ctx->runqueue);
}
spinlock_release(&ctx->runqueue_lock);
}
void remove_from_cpu_runqueue(struct sched_object *obj, uint16_t pcpu_id)
{
struct sched_context *ctx = &per_cpu(sched_ctx, pcpu_id);
spinlock_obtain(&ctx->runqueue_lock);
list_del_init(&obj->run_list);
spinlock_release(&ctx->runqueue_lock);
}
static struct sched_object *get_next_sched_obj(struct sched_context *ctx)
{
struct sched_object *obj = NULL;
spinlock_obtain(&ctx->runqueue_lock);
if (!list_empty(&ctx->runqueue)) {
obj = get_first_item(&ctx->runqueue, struct sched_object, run_list);
}
spinlock_release(&ctx->runqueue_lock);
return obj;
}
void make_reschedule_request(uint16_t pcpu_id)
{
struct sched_context *ctx = &per_cpu(sched_ctx, pcpu_id);
bitmap_set_lock(NEED_RESCHEDULE, &ctx->flags);
if (get_cpu_id() != pcpu_id) {
send_single_ipi(pcpu_id, VECTOR_NOTIFY_VCPU);
}
}
bool need_reschedule(uint16_t pcpu_id)
{
struct sched_context *ctx = &per_cpu(sched_ctx, pcpu_id);
return bitmap_test(NEED_RESCHEDULE, &ctx->flags);
}
void make_pcpu_offline(uint16_t pcpu_id)
{
struct sched_context *ctx = &per_cpu(sched_ctx, pcpu_id);
bitmap_set_lock(NEED_OFFLINE, &ctx->flags);
if (get_cpu_id() != pcpu_id) {
send_single_ipi(pcpu_id, VECTOR_NOTIFY_VCPU);
}
}
int32_t need_offline(uint16_t pcpu_id)
{
struct sched_context *ctx = &per_cpu(sched_ctx, pcpu_id);
return bitmap_test_and_clear_lock(NEED_OFFLINE, &ctx->flags);
}
static void switch_to_asm(struct sched_object *next, uint64_t cur_sp)
{
asm volatile ("movq %2, %%rsp\n"
"movq %0, %%rdi\n"
"call 22f\n"
"11: \n"
"pause\n"
"jmp 11b\n"
"22:\n"
"mov %1, (%%rsp)\n"
"ret\n"
:
: "c"(next), "a"(next->thread), "r"(cur_sp)
: "memory");
}
static void switch_to(struct sched_object *next)
{
/*
* reset stack pointer here. Otherwise, schedule
* is recursive call and stack will overflow finally.
*/
uint64_t cur_sp = (uint64_t)&get_cpu_var(stack)[CONFIG_STACK_SIZE];
switch_to_asm(next, cur_sp);
}
static void prepare_switch(struct sched_object *prev, struct sched_object *next)
{
if ((prev != NULL) && (prev->prepare_switch_out != NULL)) {
prev->prepare_switch_out(prev);
}
/* update current object */
get_cpu_var(sched_ctx).curr_obj = next;
if ((next != NULL) && (next->prepare_switch_in != NULL)) {
next->prepare_switch_in(next);
}
}
void schedule(void)
{
uint16_t pcpu_id = get_cpu_id();
struct sched_context *ctx = &per_cpu(sched_ctx, pcpu_id);
struct sched_object *next = NULL;
struct sched_object *prev = ctx->curr_obj;
get_schedule_lock(pcpu_id);
next = get_next_sched_obj(ctx);
bitmap_clear_lock(NEED_RESCHEDULE, &ctx->flags);
if (prev == next) {
release_schedule_lock(pcpu_id);
} else {
prepare_switch(prev, next);
release_schedule_lock(pcpu_id);
if (next == NULL) {
next = &get_cpu_var(idle);
}
switch_to(next);
ASSERT(false, "Shouldn't go here");
}
}
void switch_to_idle(run_thread_t idle_thread)
{
struct sched_object *idle = &get_cpu_var(idle);
idle->thread = idle_thread;
idle->prepare_switch_out = NULL;
idle->prepare_switch_in = NULL;
if (idle_thread != NULL) {
idle_thread(idle);
}
}